Cargando…
Cross-Subject EEG Emotion Recognition With Self-Organized Graph Neural Network
As a physiological process and high-level cognitive behavior, emotion is an important subarea in neuroscience research. Emotion recognition across subjects based on brain signals has attracted much attention. Due to individual differences across subjects and the low signal-to-noise ratio of EEG sign...
Autores principales: | Li, Jingcong, Li, Shuqi, Pan, Jiahui, Wang, Fei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8221183/ https://www.ncbi.nlm.nih.gov/pubmed/34177441 http://dx.doi.org/10.3389/fnins.2021.611653 |
Ejemplares similares
-
STGATE: Spatial-temporal graph attention network with a transformer encoder for EEG-based emotion recognition
por: Li, Jingcong, et al.
Publicado: (2023) -
Identification of Autism Spectrum Disorder With Functional Graph Discriminative Network
por: Li, Jingcong, et al.
Publicado: (2021) -
Multi-channel EEG emotion recognition through residual graph attention neural network
por: Chao, Hao, et al.
Publicado: (2023) -
Cross-Subject EEG-Based Emotion Recognition Through Neural Networks With Stratified Normalization
por: Fdez, Javier, et al.
Publicado: (2021) -
Exploring EEG Features in Cross-Subject Emotion Recognition
por: Li, Xiang, et al.
Publicado: (2018)