Cargando…

Mining of Consumer Product Ingredient and Purchasing Data to Identify Potential Chemical Coexposures

BACKGROUND: Chemicals in consumer products are a major contributor to human chemical coexposures. Consumers purchase and use a wide variety of products containing potentially thousands of chemicals. There is a need to identify potential real-world chemical coexposures to prioritize in vitro toxicity...

Descripción completa

Detalles Bibliográficos
Autores principales: Stanfield, Zachary, Addington, Cody K., Dionisio, Kathie L., Lyons, David, Tornero-Velez, Rogelio, Phillips, Katherine A., Buckley, Timothy J., Isaacs, Kristin K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Environmental Health Perspectives 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8221370/
https://www.ncbi.nlm.nih.gov/pubmed/34160298
http://dx.doi.org/10.1289/EHP8610
Descripción
Sumario:BACKGROUND: Chemicals in consumer products are a major contributor to human chemical coexposures. Consumers purchase and use a wide variety of products containing potentially thousands of chemicals. There is a need to identify potential real-world chemical coexposures to prioritize in vitro toxicity screening. However, due to the vast number of potential chemical combinations, this identification has been a major challenge. OBJECTIVES: We aimed to develop and implement a data-driven procedure for identifying prevalent chemical combinations to which humans are exposed through purchase and use of consumer products. METHODS: We applied frequent itemset mining to an integrated data set linking consumer product chemical ingredient data with product purchasing data from 60,000 households to identify chemical combinations resulting from co-use of consumer products. RESULTS: We identified co-occurrence patterns of chemicals over all households as well as those specific to demographic groups based on race/ethnicity, income, education, and family composition. We also identified chemicals with the highest potential for aggregate exposure by identifying chemicals occurring in multiple products used by the same household. Last, a case study of chemicals active in estrogen and androgen receptor in silico models revealed priority chemical combinations co-targeting receptors involved in important biological signaling pathways. DISCUSSION: Integration and comprehensive analysis of household purchasing data and product-chemical information provided a means to assess human near-field exposure and inform selection of chemical combinations for high-throughput screening in in vitro assays. https://doi.org/10.1289/EHP8610