Cargando…

Kmerator Suite: design of specific k-mer signatures and automatic metadata discovery in large RNA-seq datasets

The huge body of publicly available RNA-sequencing (RNA-seq) libraries is a treasure of functional information allowing to quantify the expression of known or novel transcripts in tissues. However, transcript quantification commonly relies on alignment methods requiring a lot of computational resour...

Descripción completa

Detalles Bibliográficos
Autores principales: Riquier, Sébastien, Bessiere, Chloé, Guibert, Benoit, Bouge, Anne-Laure, Boureux, Anthony, Ruffle, Florence, Audoux, Jérôme, Gilbert, Nicolas, Xue, Haoliang, Gautheret, Daniel, Commes, Thérèse
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8221386/
https://www.ncbi.nlm.nih.gov/pubmed/34179780
http://dx.doi.org/10.1093/nargab/lqab058
_version_ 1783711320338595840
author Riquier, Sébastien
Bessiere, Chloé
Guibert, Benoit
Bouge, Anne-Laure
Boureux, Anthony
Ruffle, Florence
Audoux, Jérôme
Gilbert, Nicolas
Xue, Haoliang
Gautheret, Daniel
Commes, Thérèse
author_facet Riquier, Sébastien
Bessiere, Chloé
Guibert, Benoit
Bouge, Anne-Laure
Boureux, Anthony
Ruffle, Florence
Audoux, Jérôme
Gilbert, Nicolas
Xue, Haoliang
Gautheret, Daniel
Commes, Thérèse
author_sort Riquier, Sébastien
collection PubMed
description The huge body of publicly available RNA-sequencing (RNA-seq) libraries is a treasure of functional information allowing to quantify the expression of known or novel transcripts in tissues. However, transcript quantification commonly relies on alignment methods requiring a lot of computational resources and processing time, which does not scale easily to large datasets. K-mer decomposition constitutes a new way to process RNA-seq data for the identification of transcriptional signatures, as k-mers can be used to quantify accurately gene expression in a less resource-consuming way. We present the Kmerator Suite, a set of three tools designed to extract specific k-mer signatures, quantify these k-mers into RNA-seq datasets and quickly visualize large dataset characteristics. The core tool, Kmerator, produces specific k-mers for 97% of human genes, enabling the measure of gene expression with high accuracy in simulated datasets. KmerExploR, a direct application of Kmerator, uses a set of predictor gene-specific k-mers to infer metadata including library protocol, sample features or contaminations from RNA-seq datasets. KmerExploR results are visualized through a user-friendly interface. Moreover, we demonstrate that the Kmerator Suite can be used for advanced queries targeting known or new biomarkers such as mutations, gene fusions or long non-coding RNAs for human health applications.
format Online
Article
Text
id pubmed-8221386
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-82213862021-06-24 Kmerator Suite: design of specific k-mer signatures and automatic metadata discovery in large RNA-seq datasets Riquier, Sébastien Bessiere, Chloé Guibert, Benoit Bouge, Anne-Laure Boureux, Anthony Ruffle, Florence Audoux, Jérôme Gilbert, Nicolas Xue, Haoliang Gautheret, Daniel Commes, Thérèse NAR Genom Bioinform Methods Article The huge body of publicly available RNA-sequencing (RNA-seq) libraries is a treasure of functional information allowing to quantify the expression of known or novel transcripts in tissues. However, transcript quantification commonly relies on alignment methods requiring a lot of computational resources and processing time, which does not scale easily to large datasets. K-mer decomposition constitutes a new way to process RNA-seq data for the identification of transcriptional signatures, as k-mers can be used to quantify accurately gene expression in a less resource-consuming way. We present the Kmerator Suite, a set of three tools designed to extract specific k-mer signatures, quantify these k-mers into RNA-seq datasets and quickly visualize large dataset characteristics. The core tool, Kmerator, produces specific k-mers for 97% of human genes, enabling the measure of gene expression with high accuracy in simulated datasets. KmerExploR, a direct application of Kmerator, uses a set of predictor gene-specific k-mers to infer metadata including library protocol, sample features or contaminations from RNA-seq datasets. KmerExploR results are visualized through a user-friendly interface. Moreover, we demonstrate that the Kmerator Suite can be used for advanced queries targeting known or new biomarkers such as mutations, gene fusions or long non-coding RNAs for human health applications. Oxford University Press 2021-06-23 /pmc/articles/PMC8221386/ /pubmed/34179780 http://dx.doi.org/10.1093/nargab/lqab058 Text en © The Author(s) 2021. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) ), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Methods Article
Riquier, Sébastien
Bessiere, Chloé
Guibert, Benoit
Bouge, Anne-Laure
Boureux, Anthony
Ruffle, Florence
Audoux, Jérôme
Gilbert, Nicolas
Xue, Haoliang
Gautheret, Daniel
Commes, Thérèse
Kmerator Suite: design of specific k-mer signatures and automatic metadata discovery in large RNA-seq datasets
title Kmerator Suite: design of specific k-mer signatures and automatic metadata discovery in large RNA-seq datasets
title_full Kmerator Suite: design of specific k-mer signatures and automatic metadata discovery in large RNA-seq datasets
title_fullStr Kmerator Suite: design of specific k-mer signatures and automatic metadata discovery in large RNA-seq datasets
title_full_unstemmed Kmerator Suite: design of specific k-mer signatures and automatic metadata discovery in large RNA-seq datasets
title_short Kmerator Suite: design of specific k-mer signatures and automatic metadata discovery in large RNA-seq datasets
title_sort kmerator suite: design of specific k-mer signatures and automatic metadata discovery in large rna-seq datasets
topic Methods Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8221386/
https://www.ncbi.nlm.nih.gov/pubmed/34179780
http://dx.doi.org/10.1093/nargab/lqab058
work_keys_str_mv AT riquiersebastien kmeratorsuitedesignofspecifickmersignaturesandautomaticmetadatadiscoveryinlargernaseqdatasets
AT bessierechloe kmeratorsuitedesignofspecifickmersignaturesandautomaticmetadatadiscoveryinlargernaseqdatasets
AT guibertbenoit kmeratorsuitedesignofspecifickmersignaturesandautomaticmetadatadiscoveryinlargernaseqdatasets
AT bougeannelaure kmeratorsuitedesignofspecifickmersignaturesandautomaticmetadatadiscoveryinlargernaseqdatasets
AT boureuxanthony kmeratorsuitedesignofspecifickmersignaturesandautomaticmetadatadiscoveryinlargernaseqdatasets
AT ruffleflorence kmeratorsuitedesignofspecifickmersignaturesandautomaticmetadatadiscoveryinlargernaseqdatasets
AT audouxjerome kmeratorsuitedesignofspecifickmersignaturesandautomaticmetadatadiscoveryinlargernaseqdatasets
AT gilbertnicolas kmeratorsuitedesignofspecifickmersignaturesandautomaticmetadatadiscoveryinlargernaseqdatasets
AT xuehaoliang kmeratorsuitedesignofspecifickmersignaturesandautomaticmetadatadiscoveryinlargernaseqdatasets
AT gautheretdaniel kmeratorsuitedesignofspecifickmersignaturesandautomaticmetadatadiscoveryinlargernaseqdatasets
AT commestherese kmeratorsuitedesignofspecifickmersignaturesandautomaticmetadatadiscoveryinlargernaseqdatasets