Cargando…

One for all: Universal material model based on minimal state-space neural networks

Computational models describing the mechanical behavior of materials are indispensable when optimizing the stiffness and strength of structures. The use of state-of-the-art models is often limited in engineering practice due to their mathematical complexity, with each material class requiring its ow...

Descripción completa

Detalles Bibliográficos
Autores principales: Bonatti, Colin, Mohr, Dirk
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8221615/
https://www.ncbi.nlm.nih.gov/pubmed/34162539
http://dx.doi.org/10.1126/sciadv.abf3658
Descripción
Sumario:Computational models describing the mechanical behavior of materials are indispensable when optimizing the stiffness and strength of structures. The use of state-of-the-art models is often limited in engineering practice due to their mathematical complexity, with each material class requiring its own distinct formulation. Here, we develop a recurrent neural network framework for material modeling by introducing “Minimal State Cells.” The framework is successfully applied to datasets representing four distinct classes of materials. It reproduces the three-dimensional stress-strain responses for arbitrary loading paths accurately and replicates the state space of conventional models. The final result is a universal model that is flexible enough to capture the mechanical behavior of any engineering material while providing an interpretable representation of their state.