Cargando…
Improving the Performance of Machine Learning-Based Network Intrusion Detection Systems on the UNSW-NB15 Dataset
Networks are exposed to an increasing number of cyberattacks due to their vulnerabilities. So, cybersecurity strives to make networks as safe as possible, by introducing defense systems to detect any suspicious activities. However, firewalls and classical intrusion detection systems (IDSs) suffer fr...
Autores principales: | Moualla, Soulaiman, Khorzom, Khaldoun, Jafar, Assef |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8221886/ https://www.ncbi.nlm.nih.gov/pubmed/34220999 http://dx.doi.org/10.1155/2021/5557577 |
Ejemplares similares
-
Peer learning in the UNSW Medicine program
por: Scicluna, Helen A., et al.
Publicado: (2015) -
Involving peers in research: the UNSW community reference panel
por: Walker, Melinda, et al.
Publicado: (2019) -
UNSW Face Test: A screening tool for super-recognizers
por: Dunn, James D., et al.
Publicado: (2020) -
Machine-Learning Approach to Optimize SMOTE Ratio in Class Imbalance Dataset for Intrusion Detection
por: Seo, Jae-Hyun, et al.
Publicado: (2018) -
Network intrusion detection using oversampling technique and machine learning algorithms
por: Ahmed, Hafiza Anisa, et al.
Publicado: (2022)