Cargando…
Dynamic fluorescence lifetime sensing with CMOS single-photon avalanche diode arrays and deep learning processors
Measuring fluorescence lifetimes of fast-moving cells or particles have broad applications in biomedical sciences. This paper presents a dynamic fluorescence lifetime sensing (DFLS) system based on the time-correlated single-photon counting (TCSPC) principle. It integrates a CMOS 192 × 128 single-ph...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Optical Society of America
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8221960/ https://www.ncbi.nlm.nih.gov/pubmed/34221671 http://dx.doi.org/10.1364/BOE.425663 |
Sumario: | Measuring fluorescence lifetimes of fast-moving cells or particles have broad applications in biomedical sciences. This paper presents a dynamic fluorescence lifetime sensing (DFLS) system based on the time-correlated single-photon counting (TCSPC) principle. It integrates a CMOS 192 × 128 single-photon avalanche diode (SPAD) array, offering an enormous photon-counting throughput without pile-up effects. We also proposed a quantized convolutional neural network (QCNN) algorithm and designed a field-programmable gate array embedded processor for fluorescence lifetime determinations. The processor uses a simple architecture, showing unparallel advantages in accuracy, analysis speed, and power consumption. It can resolve fluorescence lifetimes against disturbing noise. We evaluated the DFLS system using fluorescence dyes and fluorophore-tagged microspheres. The system can effectively measure fluorescence lifetimes within a single exposure period of the SPAD sensor, paving the way for portable time-resolved devices and shows potential in various applications. |
---|