Cargando…
A stochastic quantum program synthesis framework based on Bayesian optimization
Quantum computers and algorithms can offer exponential performance improvement over some NP-complete programs which cannot be run efficiently through a Von Neumann computing approach. In this paper, we present BayeSyn, which utilizes an enhanced stochastic program synthesis and Bayesian optimization...
Autores principales: | Xiao, Yao, Nazarian, Shahin, Bogdan, Paul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8222304/ https://www.ncbi.nlm.nih.gov/pubmed/34162898 http://dx.doi.org/10.1038/s41598-021-91035-3 |
Ejemplares similares
-
Stochastic Gradient Bayesian Optimal Experimental Designs for Simulation-based Inference
por: Zaballa, Vincent D., et al.
Publicado: (2023) -
Stochastic optimization: beyond mathematical programming
por: SCHOENAUER, Marc
Publicado: (2015) -
Bayesian inference for stochastic processes
por: Broemeling, Lyle D
Publicado: (2017) -
Stochastic quantum mechanics and quantum spacetime: a consistent unification of relativity and quantum theory based on stochastic spaces
por: Prugovecki, Eduard
Publicado: (1984) -
Quantum stochastics
por: Chang, Mou-Hsiung
Publicado: (2014)