Cargando…
Correlator convolutional neural networks as an interpretable architecture for image-like quantum matter data
Image-like data from quantum systems promises to offer greater insight into the physics of correlated quantum matter. However, the traditional framework of condensed matter physics lacks principled approaches for analyzing such data. Machine learning models are a powerful theoretical tool for analyz...
Autores principales: | Miles, Cole, Bohrdt, Annabelle, Wu, Ruihan, Chiu, Christie, Xu, Muqing, Ji, Geoffrey, Greiner, Markus, Weinberger, Kilian Q., Demler, Eugene, Kim, Eun-Ah |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8222395/ https://www.ncbi.nlm.nih.gov/pubmed/34162847 http://dx.doi.org/10.1038/s41467-021-23952-w |
Ejemplares similares
-
Dichotomy of heavy and light pairs of holes in the t−J model
por: Bohrdt, A., et al.
Publicado: (2023) -
Magnetically mediated hole pairing in fermionic ladders of ultracold atoms
por: Hirthe, Sarah, et al.
Publicado: (2023) -
The interpretation of quantum mechanics
por: Lamb, Willis Eugene, et al.
Publicado: (2001) -
Convolutional architectures for virtual screening
por: Mendolia, Isabella, et al.
Publicado: (2020) -
Digital quantum simulation of NMR experiments
por: Seetharam, Kushal, et al.
Publicado: (2023)