Cargando…
Deep Learning Assisted Neonatal Cry Classification via Support Vector Machine Models
Neonatal infants communicate with us through cries. The infant cry signals have distinct patterns depending on the purpose of the cries. Preprocessing, feature extraction, and feature selection need expert attention and take much effort in audio signals in recent days. In deep learning techniques, i...
Autores principales: | K, Ashwini, Vincent, P. M. Durai Raj, Srinivasan, Kathiravan, Chang, Chuan-Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8222524/ https://www.ncbi.nlm.nih.gov/pubmed/34178926 http://dx.doi.org/10.3389/fpubh.2021.670352 |
Ejemplares similares
-
An Efficient Classification of Neonates Cry Using Extreme Gradient Boosting-Assisted Grouped-Support-Vector Network
por: Chang, Chuan-Yu, et al.
Publicado: (2021) -
A Multistage Heterogeneous Stacking Ensemble Model for Augmented Infant Cry Classification
por: Joshi, Vinayak Ravi, et al.
Publicado: (2022) -
A framework to distinguish healthy/cancer renal CT images using the fused deep features
por: Rajinikanth, Venkatesan, et al.
Publicado: (2023) -
A Hybrid Framework for Intrusion Detection in Healthcare Systems Using Deep Learning
por: Akshay Kumaar, M., et al.
Publicado: (2022) -
MRI brain tumor segmentation using residual Spatial Pyramid Pooling-powered 3D U-Net
por: Vijay, Sanchit, et al.
Publicado: (2023)