Cargando…
Characterizing Network Search Algorithms Developed for Dynamic Causal Modeling
Dynamic causal modeling (DCM) is a widely used tool to estimate the effective connectivity of specified models of a brain network. Finding the model explaining measured data is one of the most important outstanding problems in Bayesian modeling. Using heuristic model search algorithms enables us to...
Autores principales: | Aranyi, Sándor Csaba, Nagy, Marianna, Opposits, Gábor, Berényi, Ervin, Emri, Miklós |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8222613/ https://www.ncbi.nlm.nih.gov/pubmed/34177506 http://dx.doi.org/10.3389/fninf.2021.656486 |
Ejemplares similares
-
Effective connectivity differences in motor network during passive movement of paretic and non-paretic ankles in subacute stroke patients
por: Nagy, Marianna, et al.
Publicado: (2020) -
Voxel-Wise Motion Artifacts in Population-Level Whole-Brain Connectivity Analysis of Resting-State fMRI
por: Spisák, Tamás, et al.
Publicado: (2014) -
Topological dissimilarities of hierarchical resting networks in type 2 diabetes mellitus and obesity
por: Aranyi, Sándor Csaba, et al.
Publicado: (2022) -
Automated procedure assessing the accuracy of HRCT–PET registration applied in functional virtual bronchoscopy
por: Opposits, Gábor, et al.
Publicado: (2021) -
BCI Control of Heuristic Search Algorithms
por: Cavazza, Marc, et al.
Publicado: (2017)