Cargando…

Cellular Metabolomics Profiles Associated With Drug Chemosensitivity in AML

BACKGROUND: Acute myeloid leukemia (AML) is a hematological malignancy with a dismal prognosis. For over four decades, AML has primarily been treated by cytarabine combined with an anthracycline. Although a significant proportion of patients achieve remission with this regimen, roughly 40% of childr...

Descripción completa

Detalles Bibliográficos
Autores principales: Stockard, Bradley, Bhise, Neha, Shin, Miyoung, Guingab-Cagmat, Joy, Garrett, Timothy J., Pounds, Stanley, Lamba, Jatinder K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8222790/
https://www.ncbi.nlm.nih.gov/pubmed/34178663
http://dx.doi.org/10.3389/fonc.2021.678008
_version_ 1783711562626760704
author Stockard, Bradley
Bhise, Neha
Shin, Miyoung
Guingab-Cagmat, Joy
Garrett, Timothy J.
Pounds, Stanley
Lamba, Jatinder K.
author_facet Stockard, Bradley
Bhise, Neha
Shin, Miyoung
Guingab-Cagmat, Joy
Garrett, Timothy J.
Pounds, Stanley
Lamba, Jatinder K.
author_sort Stockard, Bradley
collection PubMed
description BACKGROUND: Acute myeloid leukemia (AML) is a hematological malignancy with a dismal prognosis. For over four decades, AML has primarily been treated by cytarabine combined with an anthracycline. Although a significant proportion of patients achieve remission with this regimen, roughly 40% of children and 70% of adults relapse. Over 90% of patients with resistant or relapsed AML die within 3 years. Thus, relapsed and resistant disease following treatment with standard therapy are the most common clinical failures that occur in treating this disease. In this study, we evaluated the relationship between AML cell line global metabolomes and variation in chemosensitivity. METHODS: We performed global metabolomics on seven AML cell lines with varying chemosensitivity to cytarabine and the anthracycline doxorubicin (MV4.11, KG-1, HL-60, Kasumi-1, AML-193, ME1, THP-1) using ultra-high performance liquid chromatography – mass spectrometry (UHPLC-MS). Univariate and multivariate analyses were performed on the metabolite peak intensity values from UHPLC-MS using MetaboAnalyst to identify cellular metabolites associated with drug chemosensitivity. RESULTS: A total of 1,624 metabolic features were detected across the leukemic cell lines. Of these, 187 were annotated to known metabolites. With respect to doxorubicin, we observed significantly greater abundance of a carboxylic acid (1-aminocyclopropane-1-carboxylate) and several amino acids in resistant cell lines. Pathway analysis found enrichment of several amino acid biosynthesis and metabolic pathways. For cytarabine resistance, nine annotated metabolites were significantly different in resistance vs. sensitive cell lines, including D-raffinose, guanosine, inosine, guanine, aldopentose, two xenobiotics (allopurinol and 4-hydroxy-L-phenylglycine) and glucosamine/mannosamine. Pathway analysis associated these metabolites with the purine metabolic pathway. CONCLUSION: Overall, our results demonstrate that metabolomics differences contribute toward drug resistance. In addition, it could potentially identify predictive biomarkers for chemosensitivity to various anti-leukemic drugs. Our results provide opportunity to further explore these metabolites in patient samples for association with clinical response.
format Online
Article
Text
id pubmed-8222790
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-82227902021-06-25 Cellular Metabolomics Profiles Associated With Drug Chemosensitivity in AML Stockard, Bradley Bhise, Neha Shin, Miyoung Guingab-Cagmat, Joy Garrett, Timothy J. Pounds, Stanley Lamba, Jatinder K. Front Oncol Oncology BACKGROUND: Acute myeloid leukemia (AML) is a hematological malignancy with a dismal prognosis. For over four decades, AML has primarily been treated by cytarabine combined with an anthracycline. Although a significant proportion of patients achieve remission with this regimen, roughly 40% of children and 70% of adults relapse. Over 90% of patients with resistant or relapsed AML die within 3 years. Thus, relapsed and resistant disease following treatment with standard therapy are the most common clinical failures that occur in treating this disease. In this study, we evaluated the relationship between AML cell line global metabolomes and variation in chemosensitivity. METHODS: We performed global metabolomics on seven AML cell lines with varying chemosensitivity to cytarabine and the anthracycline doxorubicin (MV4.11, KG-1, HL-60, Kasumi-1, AML-193, ME1, THP-1) using ultra-high performance liquid chromatography – mass spectrometry (UHPLC-MS). Univariate and multivariate analyses were performed on the metabolite peak intensity values from UHPLC-MS using MetaboAnalyst to identify cellular metabolites associated with drug chemosensitivity. RESULTS: A total of 1,624 metabolic features were detected across the leukemic cell lines. Of these, 187 were annotated to known metabolites. With respect to doxorubicin, we observed significantly greater abundance of a carboxylic acid (1-aminocyclopropane-1-carboxylate) and several amino acids in resistant cell lines. Pathway analysis found enrichment of several amino acid biosynthesis and metabolic pathways. For cytarabine resistance, nine annotated metabolites were significantly different in resistance vs. sensitive cell lines, including D-raffinose, guanosine, inosine, guanine, aldopentose, two xenobiotics (allopurinol and 4-hydroxy-L-phenylglycine) and glucosamine/mannosamine. Pathway analysis associated these metabolites with the purine metabolic pathway. CONCLUSION: Overall, our results demonstrate that metabolomics differences contribute toward drug resistance. In addition, it could potentially identify predictive biomarkers for chemosensitivity to various anti-leukemic drugs. Our results provide opportunity to further explore these metabolites in patient samples for association with clinical response. Frontiers Media S.A. 2021-06-10 /pmc/articles/PMC8222790/ /pubmed/34178663 http://dx.doi.org/10.3389/fonc.2021.678008 Text en Copyright © 2021 Stockard, Bhise, Shin, Guingab-Cagmat, Garrett, Pounds and Lamba https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Oncology
Stockard, Bradley
Bhise, Neha
Shin, Miyoung
Guingab-Cagmat, Joy
Garrett, Timothy J.
Pounds, Stanley
Lamba, Jatinder K.
Cellular Metabolomics Profiles Associated With Drug Chemosensitivity in AML
title Cellular Metabolomics Profiles Associated With Drug Chemosensitivity in AML
title_full Cellular Metabolomics Profiles Associated With Drug Chemosensitivity in AML
title_fullStr Cellular Metabolomics Profiles Associated With Drug Chemosensitivity in AML
title_full_unstemmed Cellular Metabolomics Profiles Associated With Drug Chemosensitivity in AML
title_short Cellular Metabolomics Profiles Associated With Drug Chemosensitivity in AML
title_sort cellular metabolomics profiles associated with drug chemosensitivity in aml
topic Oncology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8222790/
https://www.ncbi.nlm.nih.gov/pubmed/34178663
http://dx.doi.org/10.3389/fonc.2021.678008
work_keys_str_mv AT stockardbradley cellularmetabolomicsprofilesassociatedwithdrugchemosensitivityinaml
AT bhiseneha cellularmetabolomicsprofilesassociatedwithdrugchemosensitivityinaml
AT shinmiyoung cellularmetabolomicsprofilesassociatedwithdrugchemosensitivityinaml
AT guingabcagmatjoy cellularmetabolomicsprofilesassociatedwithdrugchemosensitivityinaml
AT garretttimothyj cellularmetabolomicsprofilesassociatedwithdrugchemosensitivityinaml
AT poundsstanley cellularmetabolomicsprofilesassociatedwithdrugchemosensitivityinaml
AT lambajatinderk cellularmetabolomicsprofilesassociatedwithdrugchemosensitivityinaml