Cargando…

Face mask detection using deep learning: An approach to reduce risk of Coronavirus spread

Effective strategies to restrain COVID-19 pandemic need high attention to mitigate negatively impacted communal health and global economy, with the brim-full horizon yet to unfold. In the absence of effective antiviral and limited medical resources, many measures are recommended by WHO to control th...

Descripción completa

Detalles Bibliográficos
Autores principales: Sethi, Shilpa, Kathuria, Mamta, Kaushik, Trilok
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8223067/
https://www.ncbi.nlm.nih.gov/pubmed/34171485
http://dx.doi.org/10.1016/j.jbi.2021.103848
Descripción
Sumario:Effective strategies to restrain COVID-19 pandemic need high attention to mitigate negatively impacted communal health and global economy, with the brim-full horizon yet to unfold. In the absence of effective antiviral and limited medical resources, many measures are recommended by WHO to control the infection rate and avoid exhausting the limited medical resources. Wearing a mask is among the non-pharmaceutical intervention measures that can be used to cut the primary source of SARS-CoV2 droplets expelled by an infected individual. Regardless of discourse on medical resources and diversities in masks, all countries are mandating coverings over the nose and mouth in public. To contribute towards communal health, this paper aims to devise a highly accurate and real-time technique that can efficiently detect non-mask faces in public and thus, enforcing to wear mask. The proposed technique is ensemble of one-stage and two-stage detectors to achieve low inference time and high accuracy. We start with ResNet50 as a baseline and applied the concept of transfer learning to fuse high-level semantic information in multiple feature maps. In addition, we also propose a bounding box transformation to improve localization performance during mask detection. The experiment is conducted with three popular baseline models viz. ResNet50, AlexNet and MobileNet. We explored the possibility of these models to plug-in with the proposed model so that highly accurate results can be achieved in less inference time. It is observed that the proposed technique achieves high accuracy (98.2%) when implemented with ResNet50. Besides, the proposed model generates 11.07% and 6.44% higher precision and recall in mask detection when compared to the recent public baseline model published as RetinaFaceMask detector. The outstanding performance of the proposed model is highly suitable for video surveillance devices.