Cargando…
Learning the Regulatory Code of Gene Expression
Data-driven machine learning is the method of choice for predicting molecular phenotypes from nucleotide sequence, modeling gene expression events including protein-DNA binding, chromatin states as well as mRNA and protein levels. Deep neural networks automatically learn informative sequence represe...
Autores principales: | Zrimec, Jan, Buric, Filip, Kokina, Mariia, Garcia, Victor, Zelezniak, Aleksej |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8223075/ https://www.ncbi.nlm.nih.gov/pubmed/34179082 http://dx.doi.org/10.3389/fmolb.2021.673363 |
Ejemplares similares
-
Parallel Factor Analysis Enables Quantification and Identification of Highly Convolved Data-Independent-Acquired Protein Spectra
por: Buric, Filip, et al.
Publicado: (2020) -
Plastic-Degrading Potential across the Global Microbiome Correlates with Recent Pollution Trends
por: Zrimec, Jan, et al.
Publicado: (2021) -
Deep learning suggests that gene expression is encoded in all parts of a co-evolving interacting gene regulatory structure
por: Zrimec, Jan, et al.
Publicado: (2020) -
Learning deep representations of enzyme thermal adaptation
por: Li, Gang, et al.
Publicado: (2022) -
metaGEM: reconstruction of genome scale metabolic models directly from metagenomes
por: Zorrilla, Francisco, et al.
Publicado: (2021)