Cargando…
Preventing Failures by Dataset Shift Detection in Safety-Critical Graph Applications
Dataset shift refers to the problem where the input data distribution may change over time (e.g., between training and test stages). Since this can be a critical bottleneck in several safety-critical applications such as healthcare, drug-discovery, etc., dataset shift detection has become an importa...
Autores principales: | Song, Hoseung, Thiagarajan, Jayaraman J., Kailkhura, Bhavya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8223254/ https://www.ncbi.nlm.nih.gov/pubmed/34179767 http://dx.doi.org/10.3389/frai.2021.589632 |
Ejemplares similares
-
Survey on graph embeddings and their applications to machine learning problems on graphs
por: Makarov, Ilya, et al.
Publicado: (2021) -
Graph Learning for Fake Review Detection
por: Yu, Shuo, et al.
Publicado: (2022) -
Malware detection framework based on graph variational autoencoder extracted embeddings from API-call graphs
por: Gunduz, Hakan
Publicado: (2022) -
IRC-Safe Graph Autoencoder for Unsupervised Anomaly Detection
por: Atkinson, Oliver, et al.
Publicado: (2022) -
A survey on exponential random graph models: an application perspective
por: Ghafouri, Saeid, et al.
Publicado: (2020)