Cargando…

PSEN1-selective gamma-secretase inhibition in combination with kinase or XPO-1 inhibitors effectively targets T cell acute lymphoblastic leukemia

BACKGROUND: T cell acute lymphoblastic leukemia (T-ALL) is a high-risk subtype that comprises 10–15% of childhood and 20–25% of adult ALL cases. Over 70% of T-ALL patients harbor activating mutations in the NOTCH1 signaling pathway and are predicted to be sensitive to gamma-secretase inhibitors. We...

Descripción completa

Detalles Bibliográficos
Autores principales: Govaerts, Inge, Prieto, Cristina, Vandersmissen, Charlien, Gielen, Olga, Jacobs, Kris, Provost, Sarah, Nittner, David, Maertens, Johan, Boeckx, Nancy, De Keersmaecker, Kim, Segers, Heidi, Cools, Jan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8223323/
https://www.ncbi.nlm.nih.gov/pubmed/34167562
http://dx.doi.org/10.1186/s13045-021-01114-1
Descripción
Sumario:BACKGROUND: T cell acute lymphoblastic leukemia (T-ALL) is a high-risk subtype that comprises 10–15% of childhood and 20–25% of adult ALL cases. Over 70% of T-ALL patients harbor activating mutations in the NOTCH1 signaling pathway and are predicted to be sensitive to gamma-secretase inhibitors. We have recently demonstrated that selective inhibition of PSEN1-containing gamma-secretase complexes can overcome the dose-limiting toxicity associated with broad gamma-secretase inhibitors. In this study, we developed combination treatment strategies with the PSEN1-selective gamma-secretase inhibitor MRK-560 and other targeted agents (kinase inhibitors ruxolitinib and imatinib; XPO-1 inhibitor KPT-8602/eltanexor) for the treatment of T-ALL. METHODS: We treated T-ALL cell lines in vitro and T-ALL patient-derived xenograft (PDX) models in vivo with MRK-560 alone or in combination with other targeted inhibitors (ruxolitinib, imatinib or KPT-8602/eltanexor). We determined effects on proliferation of the cell lines and leukemia development and survival in the PDX models. RESULTS: All NOTCH1-signaling-dependent T-ALL cell lines were sensitive to MRK-560 and its combination with ruxolitinib or imatinib in JAK1- or ABL1-dependent cell lines synergistically inhibited leukemia proliferation. We also observed strong synergy between MRK-560 and KPT-8602 (eltanexor) in all NOTCH1-dependent T-ALL cell lines. Such synergy was also observed in vivo in a variety of T-ALL PDX models with NOTCH1 or FBXW7 mutations. Combination treatment significantly reduced leukemic infiltration in vivo and resulted in a survival benefit when compared to single treatment groups. We did not observe weight loss or goblet cell hyperplasia in single drug or combination treated mice when compared to control. CONCLUSIONS: These data demonstrate that the antileukemic effect of PSEN1-selective gamma-secretase inhibition can be synergistically enhanced by the addition of other targeted inhibitors. The combination of MRK-560 with KPT-8602 is a highly effective treatment combination, which circumvents the need for the identification of additional mutations and provides a clear survival benefit in vivo. These promising preclinical data warrant further development of combination treatment strategies for T-ALL based on PSEN1-selective gamma-secretase inhibition. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13045-021-01114-1.