Cargando…
mLoc-mRNA: predicting multiple sub-cellular localization of mRNAs using random forest algorithm coupled with feature selection via elastic net
BACKGROUND: Localization of messenger RNAs (mRNAs) plays a crucial role in the growth and development of cells. Particularly, it plays a major role in regulating spatio-temporal gene expression. The in situ hybridization is a promising experimental technique used to determine the localization of mRN...
Autores principales: | Meher, Prabina Kumar, Rai, Anil, Rao, Atmakuri Ramakrishna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8223360/ https://www.ncbi.nlm.nih.gov/pubmed/34167457 http://dx.doi.org/10.1186/s12859-021-04264-8 |
Ejemplares similares
-
Prediction of donor splice sites using random forest with a new sequence encoding approach
por: Meher, Prabina Kumar, et al.
Publicado: (2016) -
A statistical approach for 5′ splice site prediction using short sequence motifs and without encoding sequence data
por: Meher, Prabina Kumar, et al.
Publicado: (2014) -
funbarRF: DNA barcode-based fungal species prediction using multiclass Random Forest supervised learning model
por: Meher, Prabina Kumar, et al.
Publicado: (2019) -
miRNALoc: predicting miRNA subcellular localizations based on principal component scores of physico-chemical properties and pseudo compositions of di-nucleotides
por: Meher, Prabina Kumar, et al.
Publicado: (2020) -
Publisher Correction: miRNALoc: predicting miRNA subcellular localizations based on principal component scores of physico-chemical properties and pseudo compositions of di-nucleotides
por: Meher, Prabina Kumar, et al.
Publicado: (2021)