Cargando…
Improved Tracking of the Rheological Properties of Max-Bridge Oil-Based Mud Using Artificial Neural Networks
[Image: see text] Lab measurements for the rheological properties of mud are critical for monitoring the drilling fluid functions during the drilling operations. However, these measurements take a long time and might need more than one person to be completed. The main objectives of this research are...
Autores principales: | Alsabaa, Ahmed, Elkatatny, Salaheldin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8223408/ https://www.ncbi.nlm.nih.gov/pubmed/34179625 http://dx.doi.org/10.1021/acsomega.1c01230 |
Ejemplares similares
-
Machine Learning Model for Monitoring Rheological
Properties of Synthetic Oil-Based Mud
por: Alsabaa, Ahmed, et al.
Publicado: (2022) -
Real-Time Prediction of Rheological Properties of Invert Emulsion Mud Using Adaptive Neuro-Fuzzy Inference System
por: Alsabaa, Ahmed, et al.
Publicado: (2020) -
Data-Driven Framework
for Real-time Rheological Properties
Prediction of Flat Rheology Synthetic Oil-Based Drilling Fluids
por: Abdelaal, Ahmed, et al.
Publicado: (2023) -
Prediction of the Rheological Properties
of Invert Emulsion Mud Using an Artificial Neural Network
por: Gouda, Abdelrahman, et al.
Publicado: (2021) -
The Effect of Olive
Waste on the Rheological Properties,
Thickening Time, Permeability, and Strength of Oil Well Cement
por: Ali, Ahmed, et al.
Publicado: (2023)