Cargando…
Isolation, Biological Evaluation, and Molecular Docking Studies of Compounds from Sophora mollis (Royle) Graham Ex Baker
[Image: see text] The Sophora mollis is one of the best anti-inflammatory, antioxidant, and anticancerous plant; therefore, the isolated chemical constituents, that is, scopoletin (1), pinitol (2), 2-propenoic acid, 3-(3,4-dihydroxyphenyl)-octacosyl ester (3), betulin (4), and β-sitosterol glucoside...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8223426/ https://www.ncbi.nlm.nih.gov/pubmed/34179635 http://dx.doi.org/10.1021/acsomega.1c01532 |
Sumario: | [Image: see text] The Sophora mollis is one of the best anti-inflammatory, antioxidant, and anticancerous plant; therefore, the isolated chemical constituents, that is, scopoletin (1), pinitol (2), 2-propenoic acid, 3-(3,4-dihydroxyphenyl)-octacosyl ester (3), betulin (4), and β-sitosterol glucoside (5) were tested for these folklores. The structures of the isolated compounds were confirmed by (1)H NMR, (13)C NMR, 2D-NMR, and mass spectral data. The anti-inflammatory, anticancer, antiglycation, and antioxidant activities of compounds 1–5 were evaluated using different assays. Compound 1 exhibited significant anti-inflammatory effect as it reduced edema of the paw (83.98%), which is more potent than the standard drug (ibuprofen) (which showed an inhibition percentage of 73.22% a), followed by compound 3. Furthermore, compound 3 showed significant free-radical scavenging activity using the 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) free-radical assay. Percentage inhibition of DPPH recorded was 95.646 ± 0.003, 94.766 ± 0.014, and 94.516 ± 0.011% at concentrations of 400, 200, and 100 μg/mL, respectively. Evaluation of anticancer activity of isolated compounds reveals weak effect against HeLa and 3T3 cell lines. Docking studies of the most active compound into the binding sites of cyclooxygenase isoforms showed a better antagonistic potential against COX-1 than the COX-2 isoform. |
---|