Cargando…
Improving Manufacturing Applications of Machine Learning by Understanding Defect Classification and the Critical Error Threshold
Machine learning (ML) is unlocking patterns and insight into data to provide financial value and knowledge for organizations. Use of machine learning in manufacturing environments is increasing, yet sometimes these applications fail to produce meaningful results. A critical review of how defects are...
Autor principal: | Blondheim, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8223532/ http://dx.doi.org/10.1007/s40962-021-00637-0 |
Ejemplares similares
-
Defect Classification for Additive Manufacturing with Machine Learning
por: Altmann, Mika León, et al.
Publicado: (2023) -
Thresholding Segmentation Errors and Uncertainty with Patient-Specific Geometries
por: Toma, M., et al.
Publicado: (2021) -
CRISPRcasIdentifier: Machine learning for accurate identification and classification of CRISPR-Cas systems
por: Padilha, Victor A, et al.
Publicado: (2020) -
ShinyLearner: A containerized benchmarking tool for machine-learning classification of tabular data
por: Piccolo, Stephen R, et al.
Publicado: (2020) -
Community-driven PPE production using additive manufacturing during the COVID-19 pandemic: Survey and lessons learned
por: Budinoff, Hannah D., et al.
Publicado: (2021)