Cargando…
Radiomics and Machine Learning with Multiparametric Breast MRI for Improved Diagnostic Accuracy in Breast Cancer Diagnosis
The purpose of this multicenter retrospective study was to evaluate radiomics analysis coupled with machine learning (ML) of dynamic contrast-enhanced (DCE) and diffusion-weighted imaging (DWI) radiomics models separately and combined as multiparametric MRI for improved breast cancer detection. Cons...
Autores principales: | Daimiel Naranjo, Isaac, Gibbs, Peter, Reiner, Jeffrey S., Lo Gullo, Roberto, Sooknanan, Caleb, Thakur, Sunitha B., Jochelson, Maxine S., Sevilimedu, Varadan, Morris, Elizabeth A., Baltzer, Pascal A. T., Helbich, Thomas H., Pinker, Katja |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8223779/ https://www.ncbi.nlm.nih.gov/pubmed/34063774 http://dx.doi.org/10.3390/diagnostics11060919 |
Ejemplares similares
-
Breast Lesion Classification with Multiparametric Breast MRI Using Radiomics and Machine Learning: A Comparison with Radiologists’ Performance
por: Daimiel Naranjo, Isaac, et al.
Publicado: (2022) -
Diagnostic value of diffusion-weighted imaging with synthetic b-values in breast tumors: comparison with dynamic contrast-enhanced and multiparametric MRI
por: Daimiel Naranjo, Isaac, et al.
Publicado: (2020) -
Assessing PD-L1 Expression Status Using Radiomic Features from Contrast-Enhanced Breast MRI in Breast Cancer Patients: Initial Results
por: Lo Gullo, Roberto, et al.
Publicado: (2021) -
MRI background parenchymal enhancement, fibroglandular tissue, and mammographic breast density in patients with invasive lobular breast cancer on adjuvant endocrine hormonal treatment: associations with survival
por: Lo Gullo, Roberto, et al.
Publicado: (2020) -
Non-Invasive Assessment of Breast Cancer Molecular Subtypes with Multiparametric Magnetic Resonance Imaging Radiomics
por: Leithner, Doris, et al.
Publicado: (2020)