Cargando…
Disproportionate Vitamin A Deficiency in Women of Specific Ethnicities Linked to Differences in Allele Frequencies of Vitamin A-Related Polymorphisms
Background: While the current national prevalence rate of vitamin A deficiency (VAD) is estimated to be less than 1%, it is suggested that it varies between different ethnic groups and races within the U.S. We assessed the prevalence of VAD in pregnant women of different ethnic groups and tested the...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8223783/ https://www.ncbi.nlm.nih.gov/pubmed/34063790 http://dx.doi.org/10.3390/nu13061743 |
Sumario: | Background: While the current national prevalence rate of vitamin A deficiency (VAD) is estimated to be less than 1%, it is suggested that it varies between different ethnic groups and races within the U.S. We assessed the prevalence of VAD in pregnant women of different ethnic groups and tested these prevalence rates for associations with the vitamin A-related single nucleotide polymorphism (SNP) allele frequencies in each ethnic group. Methods: We analyzed two independent datasets of serum retinol levels with self-reported ethnicities and the differences of allele frequencies of the SNPs associated with vitamin A metabolism between groups in publicly available datasets. Results: Non-Hispanic Black and Hispanic pregnant women showed high VAD prevalence in both datasets. Interestingly, the VAD prevalence for Hispanic pregnant women significantly differed between datasets (p = 1.973 × 10(−10), 95%CI 0.04–0.22). Alleles known to confer the risk of low serum retinol (rs10882272 C and rs738409 G) showed higher frequencies in the race/ethnicity groups with more VAD. Moreover, minor allele frequencies of a set of 39 previously reported SNPs associated with vitamin A metabolism were significantly different between the populations of different ancestries than those of randomly selected SNPs (p = 0.030). Conclusions: Our analysis confirmed that VAD prevalence varies between different ethnic groups/races and may be causally associated with genetic variants conferring risk for low retinol levels. Assessing genetic variant information prior to performing an effective nutrient supplementation program will help us plan more effective food-based interventions. |
---|