Cargando…
Profiling Delirium Progression in Elderly Patients via Continuous-Time Markov Multi-State Transition Models
Poor recognition of delirium among hospitalized elderlies is a typical challenge for health care professionals. Considering methodological insufficiency for assessing time-varying diseases, a continuous-time Markov multi-state transition model (CTMMTM) was used to investigate delirium evolution in e...
Autores principales: | Ocagli, Honoria, Azzolina, Danila, Soltanmohammadi, Rozita, Aliyari, Roqaye, Bottigliengo, Daniele, Acar, Aslihan Senturk, Stivanello, Lucia, Degan, Mario, Baldi, Ileana, Lorenzoni, Giulia, Gregori, Dario |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8223967/ https://www.ncbi.nlm.nih.gov/pubmed/34064001 http://dx.doi.org/10.3390/jpm11060445 |
Ejemplares similares
-
A Machine Learning Approach for Investigating Delirium as a Multifactorial Syndrome
por: Ocagli, Honoria, et al.
Publicado: (2021) -
Profiling Patients by Intensity of Nursing Care: An Operative Approach Using Machine Learning
por: Ocagli, Honoria, et al.
Publicado: (2020) -
The Surplus Transplant Lung Allocation System in Italy: An Evaluation of the Allocation Process via Stochastic Modeling
por: Lanera, Corrado, et al.
Publicado: (2021) -
Using Social Networks to Estimate the Number of COVID-19 Cases: The Incident (Hidden COVID-19 Cases Network Estimation) Study Protocol
por: Ocagli, Honoria, et al.
Publicado: (2021) -
Epidemiology and Trends over Time of Foreign Body Injuries in the Pediatric Emergency Department
por: Ocagli, Honoria, et al.
Publicado: (2021)