Cargando…
AutoPPI: An Ensemble of Deep Autoencoders for Protein–Protein Interaction Prediction
Proteins are essential molecules, that must correctly perform their roles for the good health of living organisms. The majority of proteins operate in complexes and the way they interact has pivotal influence on the proper functioning of such organisms. In this study we address the problem of protei...
Autores principales: | Czibula, Gabriela, Albu, Alexandra-Ioana, Bocicor, Maria Iuliana, Chira, Camelia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8223997/ https://www.ncbi.nlm.nih.gov/pubmed/34064042 http://dx.doi.org/10.3390/e23060643 |
Ejemplares similares
-
Promoter Sequences Prediction Using Relational Association Rule Mining
por: Czibula, Gabriela, et al.
Publicado: (2012) -
Temporal Ordering of Cancer Microarray Data through a Reinforcement Learning Based Approach
por: Czibula, Gabriela, et al.
Publicado: (2013) -
Correction: Temporal Ordering of Cancer Microarray Data through a
Reinforcement Learning Based Approach
por: Czibula, Gabriela, et al.
Publicado: (2013) -
Road-Type Classification with Deep AutoEncoder
por: Molefe, Mohale E., et al.
Publicado: (2023) -
AutoDTI++: deep unsupervised learning for DTI prediction by autoencoders
por: Sajadi, Seyedeh Zahra, et al.
Publicado: (2021)