Cargando…
Diagnostic Accuracy of 3D Ultrasound and Artificial Intelligence for Detection of Pediatric Wrist Injuries
Wrist trauma is common in children, typically requiring radiography for diagnosis and treatment planning. However, many children do not have fractures and are unnecessarily exposed to radiation. Ultrasound performed at bedside could detect fractures prior to radiography. Modern tools including three...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8224020/ https://www.ncbi.nlm.nih.gov/pubmed/34063945 http://dx.doi.org/10.3390/children8060431 |
_version_ | 1783711805946724352 |
---|---|
author | Zhang, Jack Boora, Naveenjyote Melendez, Sarah Rakkunedeth Hareendranathan, Abhilash Jaremko, Jacob |
author_facet | Zhang, Jack Boora, Naveenjyote Melendez, Sarah Rakkunedeth Hareendranathan, Abhilash Jaremko, Jacob |
author_sort | Zhang, Jack |
collection | PubMed |
description | Wrist trauma is common in children, typically requiring radiography for diagnosis and treatment planning. However, many children do not have fractures and are unnecessarily exposed to radiation. Ultrasound performed at bedside could detect fractures prior to radiography. Modern tools including three-dimensional ultrasound (3DUS) and artificial intelligence (AI) have not yet been applied to this task. Our purpose was to assess (1) feasibility, reliability, and accuracy of 3DUS for detection of pediatric wrist fractures, and (2) accuracy of automated fracture detection via AI from 3DUS sweeps. Children presenting to an emergency department with unilateral upper extremity injury to the wrist region were scanned on both the affected and unaffected limb. Radiographs of the symptomatic limb were obtained for comparison. Ultrasound scans were read by three individuals to determine reliability. An AI network was trained and compared against the human readers. Thirty participants were enrolled, resulting in scans from fifty-five wrists. Readers had a combined sensitivity of 1.00 and specificity of 0.90 for fractures. AI interpretation was indistinguishable from human interpretation, with all fractures detected in the test set of 36 images (sensitivity = 1.0). The high sensitivity of 3D ultrasound and automated AI ultrasound interpretation suggests that ultrasound could potentially rule out fractures in the emergency department. |
format | Online Article Text |
id | pubmed-8224020 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-82240202021-06-25 Diagnostic Accuracy of 3D Ultrasound and Artificial Intelligence for Detection of Pediatric Wrist Injuries Zhang, Jack Boora, Naveenjyote Melendez, Sarah Rakkunedeth Hareendranathan, Abhilash Jaremko, Jacob Children (Basel) Article Wrist trauma is common in children, typically requiring radiography for diagnosis and treatment planning. However, many children do not have fractures and are unnecessarily exposed to radiation. Ultrasound performed at bedside could detect fractures prior to radiography. Modern tools including three-dimensional ultrasound (3DUS) and artificial intelligence (AI) have not yet been applied to this task. Our purpose was to assess (1) feasibility, reliability, and accuracy of 3DUS for detection of pediatric wrist fractures, and (2) accuracy of automated fracture detection via AI from 3DUS sweeps. Children presenting to an emergency department with unilateral upper extremity injury to the wrist region were scanned on both the affected and unaffected limb. Radiographs of the symptomatic limb were obtained for comparison. Ultrasound scans were read by three individuals to determine reliability. An AI network was trained and compared against the human readers. Thirty participants were enrolled, resulting in scans from fifty-five wrists. Readers had a combined sensitivity of 1.00 and specificity of 0.90 for fractures. AI interpretation was indistinguishable from human interpretation, with all fractures detected in the test set of 36 images (sensitivity = 1.0). The high sensitivity of 3D ultrasound and automated AI ultrasound interpretation suggests that ultrasound could potentially rule out fractures in the emergency department. MDPI 2021-05-21 /pmc/articles/PMC8224020/ /pubmed/34063945 http://dx.doi.org/10.3390/children8060431 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhang, Jack Boora, Naveenjyote Melendez, Sarah Rakkunedeth Hareendranathan, Abhilash Jaremko, Jacob Diagnostic Accuracy of 3D Ultrasound and Artificial Intelligence for Detection of Pediatric Wrist Injuries |
title | Diagnostic Accuracy of 3D Ultrasound and Artificial Intelligence for Detection of Pediatric Wrist Injuries |
title_full | Diagnostic Accuracy of 3D Ultrasound and Artificial Intelligence for Detection of Pediatric Wrist Injuries |
title_fullStr | Diagnostic Accuracy of 3D Ultrasound and Artificial Intelligence for Detection of Pediatric Wrist Injuries |
title_full_unstemmed | Diagnostic Accuracy of 3D Ultrasound and Artificial Intelligence for Detection of Pediatric Wrist Injuries |
title_short | Diagnostic Accuracy of 3D Ultrasound and Artificial Intelligence for Detection of Pediatric Wrist Injuries |
title_sort | diagnostic accuracy of 3d ultrasound and artificial intelligence for detection of pediatric wrist injuries |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8224020/ https://www.ncbi.nlm.nih.gov/pubmed/34063945 http://dx.doi.org/10.3390/children8060431 |
work_keys_str_mv | AT zhangjack diagnosticaccuracyof3dultrasoundandartificialintelligencefordetectionofpediatricwristinjuries AT booranaveenjyote diagnosticaccuracyof3dultrasoundandartificialintelligencefordetectionofpediatricwristinjuries AT melendezsarah diagnosticaccuracyof3dultrasoundandartificialintelligencefordetectionofpediatricwristinjuries AT rakkunedethhareendranathanabhilash diagnosticaccuracyof3dultrasoundandartificialintelligencefordetectionofpediatricwristinjuries AT jaremkojacob diagnosticaccuracyof3dultrasoundandartificialintelligencefordetectionofpediatricwristinjuries |