Cargando…
Neural Estimator of Information for Time-Series Data with Dependency
Novel approaches to estimate information measures using neural networks are well-celebrated in recent years both in the information theory and machine learning communities. These neural-based estimators are shown to converge to the true values when estimating mutual information and conditional mutua...
Autores principales: | Molavipour, Sina, Ghourchian, Hamid, Bassi, Germán, Skoglund, Mikael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8224080/ https://www.ncbi.nlm.nih.gov/pubmed/34064014 http://dx.doi.org/10.3390/e23060641 |
Ejemplares similares
-
Physics-informed neural networks for modeling physiological time series for cuffless blood pressure estimation
por: Sel, Kaan, et al.
Publicado: (2023) -
PELP: Accounting for Missing Data in Neural Time Series by Periodic Estimation of Lost Packets
por: Dastin-van Rijn, Evan M., et al.
Publicado: (2022) -
The Convex Information Bottleneck Lagrangian
por: Rodríguez Gálvez, Borja, et al.
Publicado: (2020) -
A Method for Estimating the Entropy of Time Series Using Artificial Neural Networks
por: Velichko, Andrei, et al.
Publicado: (2021) -
Practical Measures of Integrated Information for Time-Series Data
por: Barrett, Adam B., et al.
Publicado: (2011)