Cargando…
Object and anatomical feature recognition in surgical video images based on a convolutional neural network
PURPOSE: Artificial intelligence-enabled techniques can process large amounts of surgical data and may be utilized for clinical decision support to recognize or forecast adverse events in an actual intraoperative scenario. To develop an image-guided navigation technology that will help in surgical e...
Autores principales: | Bamba, Yoshiko, Ogawa, Shimpei, Itabashi, Michio, Shindo, Hironari, Kameoka, Shingo, Okamoto, Takahiro, Yamamoto, Masakazu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8224261/ https://www.ncbi.nlm.nih.gov/pubmed/34169465 http://dx.doi.org/10.1007/s11548-021-02434-w |
Ejemplares similares
-
Automated recognition of objects and types of forceps in surgical images using deep learning
por: Bamba, Yoshiko, et al.
Publicado: (2021) -
Superior prognosis stratification for stage III colon cancer using log odds of positive lymph nodes (LODDS) compared to TNM stage classification: the Japanese study group for postoperative follow-up of colorectal cancer
por: Ogawa, Shimpei, et al.
Publicado: (2020) -
Significance of FDG-PET in Identification of Diseases of the Appendix – Based on Experience of Two Cases Falsely Positive for FDG Accumulation
por: Ogawa, Shimpei, et al.
Publicado: (2009) -
Sub-classification of Stage II colorectal cancer based on clinicopathological risk factors for recurrence
por: Hashimoto, Takuzo, et al.
Publicado: (2013) -
Erratum to: Sub-classification of Stage II colorectal cancer based on clinicopathological risk factors for recurrence
por: Hashimoto, Takuzo, et al.
Publicado: (2014)