Cargando…
A New Regression Model for the Analysis of Overdispersed and Zero-Modified Count Data
Count datasets are traditionally analyzed using the ordinary Poisson distribution. However, said model has its applicability limited, as it can be somewhat restrictive to handling specific data structures. In this case, the need arises for obtaining alternative models that accommodate, for example,...
Autores principales: | Bertoli, Wesley, Conceição, Katiane S., Andrade, Marinho G., Louzada, Francisco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8224290/ https://www.ncbi.nlm.nih.gov/pubmed/34064281 http://dx.doi.org/10.3390/e23060646 |
Ejemplares similares
-
Negative Binomial Regression: Understanding and Modeling Overdispersed Count Data
por: Hilbe, Joseph M
Publicado: (2011) -
A new regression model for overdispersed binomial data accounting for outliers and an excess of zeros
por: Ascari, Roberto, et al.
Publicado: (2021) -
Dirichlet negative multinomial regression for overdispersed correlated count
data
por: Farewell, Daniel M., et al.
Publicado: (2013) -
Modeling zero inflation and overdispersion in provisional Covid-19 death counts
por: Effiong, Andem, et al.
Publicado: (2022) -
Modelling zero-truncated overdispersed antenatal health care count data of women in Bangladesh
por: Hossain, Zakir, et al.
Publicado: (2020)