Cargando…
Leaf Counting: Fusing Network Components for Improved Accuracy
Leaf counting in potted plants is an important building block for estimating their health status and growth rate and has obtained increasing attention from the visual phenotyping community in recent years. Two novel deep learning approaches for visual leaf counting tasks are proposed, evaluated, and...
Autores principales: | Farjon, Guy, Itzhaky, Yotam, Khoroshevsky, Faina, Bar-Hillel, Aharon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8224400/ https://www.ncbi.nlm.nih.gov/pubmed/34177972 http://dx.doi.org/10.3389/fpls.2021.575751 |
Ejemplares similares
-
Rapeseed Stand Count Estimation at Leaf Development Stages With UAV Imagery and Convolutional Neural Networks
por: Zhang, Jian, et al.
Publicado: (2020) -
A Segmentation-Guided Deep Learning Framework for Leaf Counting
por: Fan, Xijian, et al.
Publicado: (2022) -
Revealing the Genetic Components Responsible for the Unique Photosynthetic Stem Capability of the Wild Almond Prunus arabica (Olivier) Meikle
por: Brukental, Hillel, et al.
Publicado: (2021) -
Grape Leaf Disease Identification Using Improved Deep Convolutional Neural Networks
por: Liu, Bin, et al.
Publicado: (2020) -
Identification of Apple Leaf Diseases by Improved Deep Convolutional Neural Networks With an Attention Mechanism
por: Wang, Peng, et al.
Publicado: (2021)