Cargando…
Direct Prediction of Phonon Density of States With Euclidean Neural Networks
Machine learning has demonstrated great power in materials design, discovery, and property prediction. However, despite the success of machine learning in predicting discrete properties, challenges remain for continuous property prediction. The challenge is aggravated in crystalline solids due to cr...
Autores principales: | Chen, Zhantao, Andrejevic, Nina, Smidt, Tess, Ding, Zhiwei, Xu, Qian, Chi, Yen‐Ting, Nguyen, Quynh T., Alatas, Ahmet, Kong, Jing, Li, Mingda |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8224435/ https://www.ncbi.nlm.nih.gov/pubmed/34165895 http://dx.doi.org/10.1002/advs.202004214 |
Ejemplares similares
-
Finding symmetry breaking order parameters with Euclidean neural networks
por: Smidt, Tess E., et al.
Publicado: (2020) -
Machine learning magnetism classifiers from atomic coordinates
por: Merker, Helena A., et al.
Publicado: (2022) -
Quantized thermoelectric Hall effect induces giant power factor in a topological semimetal
por: Han, Fei, et al.
Publicado: (2020) -
The Effect of Embedded Nanoparticles on the Phonon Spectrum of Ice: An Inelastic X-ray Scattering Study
por: De Francesco, Alessio, et al.
Publicado: (2023) -
Euclidean and non-euclidean geometries : development and history
por: Greenberg, Marvin Jay
Publicado: (1994)