Cargando…

Pre‐Lithiation Strategies for Next‐Generation Practical Lithium‐Ion Batteries

Next‐generation Li‐ion batteries (LIBs) with higher energy density adopt some novel anode materials, which generally have the potential to exhibit higher capacity, superior rate performance as well as better cycling durability than conventional graphite anode, while on the other hand always suffer f...

Descripción completa

Detalles Bibliográficos
Autores principales: Jin, Liming, Shen, Chao, Wu, Qiang, Shellikeri, Annadanesh, Zheng, Junsheng, Zhang, Cunman, Zheng, Jim P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8224452/
https://www.ncbi.nlm.nih.gov/pubmed/34165896
http://dx.doi.org/10.1002/advs.202005031
Descripción
Sumario:Next‐generation Li‐ion batteries (LIBs) with higher energy density adopt some novel anode materials, which generally have the potential to exhibit higher capacity, superior rate performance as well as better cycling durability than conventional graphite anode, while on the other hand always suffer from larger active lithium loss (ALL) in the first several cycles. During the last two decades, various pre‐lithiation strategies are developed to mitigate the initial ALL by presetting the extra Li sources to effectively improve the first Coulombic efficiency and thus achieve higher energy density as well as better cyclability. In this progress report, the origin of the huge initial ALL of the anode and its effect on the performance of full cells are first illustrated in theory. Then, various pre‐lithiation strategies to resolve these issues are summarized, classified, and compared in detail. Moreover, the research progress of pre‐lithiation strategies for the representative electrochemical systems are carefully reviewed. Finally, the current challenges and future perspectives are particularly analyzed and outlooked. This progress report aims to bring up new insights to reassess the significance of pre‐lithiation strategies and offer a guideline for the research directions tailored for different applications based on the proposed pre‐lithiation strategies summaries and comparisons.