Cargando…
TilGAN: GAN for Facilitating Tumor-Infiltrating Lymphocyte Pathology Image Synthesis With Improved Image Classification
Tumor-infiltrating lymphocytes (TILs) act as immune cells against cancer tissues. The manual assessment of TILs is usually erroneous, tedious, costly and subject to inter- and intraobserver variability. Machine learning approaches can solve these issues, but they require a large amount of labeled da...
Autores principales: | SAHA, MONJOY, GUO, XIAOYUAN, SHARMA, ASHISH |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8224465/ https://www.ncbi.nlm.nih.gov/pubmed/34178560 http://dx.doi.org/10.1109/access.2021.3084597 |
Ejemplares similares
-
GANs for Medical Image Synthesis: An Empirical Study
por: Skandarani, Youssef, et al.
Publicado: (2023) -
BrainGAN: Brain MRI Image Generation and Classification Framework Using GAN Architectures and CNN Models
por: Alrashedy, Halima Hamid N., et al.
Publicado: (2022) -
Synthesis of Prostate MR Images for Classification Using Capsule Network-Based GAN Model
por: Yu, Houqiang, et al.
Publicado: (2020) -
ADE-CycleGAN: A Detail Enhanced Image Dehazing CycleGAN Network
por: Yan, Bingnan, et al.
Publicado: (2023) -
Effective Immunohistochemistry Pathology Microscopy Image Generation Using CycleGAN
por: Xu, Zidui, et al.
Publicado: (2020)