Cargando…
Error Bound of Mode-Based Additive Models
Due to their flexibility and interpretability, additive models are powerful tools for high-dimensional mean regression and variable selection. However, the least-squares loss-based mean regression models suffer from sensitivity to non-Gaussian noises, and there is also a need to improve the model’s...
Autores principales: | Deng, Hao, Chen, Jianghong, Song, Biqin, Pan, Zhibin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8224641/ https://www.ncbi.nlm.nih.gov/pubmed/34067420 http://dx.doi.org/10.3390/e23060651 |
Ejemplares similares
-
Error Bounds for Dynamical Spectral Estimation
por: Webber, Robert J., et al.
Publicado: (2021) -
Radial Basis Functions Intended to Determine the Upper Bound of Absolute Dynamic Error at the Output of Voltage-Mode Accelerometers
por: Tomczyk, Krzysztof, et al.
Publicado: (2019) -
Optimization-Based Approaches for Minimizing Deployment Costs for Wireless Sensor Networks with Bounded Estimation Errors
por: Hsiao, Chiu-Han, et al.
Publicado: (2021) -
Deterministic and stochastic error bounds in numerical analysis
por: Novak, Erich
Publicado: (1988) -
Gradient Learning under Tilted Empirical Risk Minimization
por: Liu, Liyuan, et al.
Publicado: (2022)