Cargando…
Towards Accurate Diagnosis of Skin Lesions Using Feedforward Back Propagation Neural Networks
In the automatic detection framework, there have been many attempts to develop models for real-time melanoma detection. To effectively discriminate benign and malign skin lesions, this work investigates sixty different architectures of the Feedforward Back Propagation Network (FFBPN), based on shape...
Autores principales: | Moldovanu, Simona, Obreja, Cristian-Dragos, Biswas, Keka C., Moraru, Luminita |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8224667/ https://www.ncbi.nlm.nih.gov/pubmed/34067493 http://dx.doi.org/10.3390/diagnostics11060936 |
Ejemplares similares
-
Refining skin lesions classification performance using geometric features of superpixels
por: Moldovanu, Simona, et al.
Publicado: (2023) -
Skin Lesion Classification Based on Surface Fractal Dimensions and Statistical Color Cluster Features Using an Ensemble of Machine Learning Techniques
por: Moldovanu, Simona, et al.
Publicado: (2021) -
Enhanced detonators detection in X-ray baggage inspection by image manipulation and deep convolutional neural networks
por: Oulhissane, Lynda, et al.
Publicado: (2023) -
Combining Sparse and Dense Features to Improve Multi-Modal Registration for Brain DTI Images
por: Moldovanu, Simona, et al.
Publicado: (2020) -
Quiescent optical solitons with complex Ginzburg–Landau equation having a dozen forms of self–phase modulation
por: Arnous, Ahmed H., et al.
Publicado: (2023)