Cargando…
Self-Discharge of a Proton Exchange Membrane Electrolyzer: Investigation for Modeling Purposes
The self-discharge phenomenon results in a decrease of the open-circuit voltage (OCV), which occurs when an electrochemical device is disconnected from the power source. Although the self-discharge phenomenon has widely been investigated for energy storage devices such as batteries and supercapacito...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8224672/ https://www.ncbi.nlm.nih.gov/pubmed/34067353 http://dx.doi.org/10.3390/membranes11060379 |
_version_ | 1783711937719173120 |
---|---|
author | Hernández-Gómez, Ángel Ramirez, Victor Guilbert, Damien Saldivar, Belem |
author_facet | Hernández-Gómez, Ángel Ramirez, Victor Guilbert, Damien Saldivar, Belem |
author_sort | Hernández-Gómez, Ángel |
collection | PubMed |
description | The self-discharge phenomenon results in a decrease of the open-circuit voltage (OCV), which occurs when an electrochemical device is disconnected from the power source. Although the self-discharge phenomenon has widely been investigated for energy storage devices such as batteries and supercapacitors, no previous works have been reported in the literature about this phenomenon for electrolyzers. For this reason, this work is mainly focused on investigating the self-discharge voltage that occurs in a proton exchange membrane (PEM) electrolyzer. To investigate this voltage drop for modeling purposes, experiments have been performed on a commercial PEM electrolyzer to analyze the decrease in the OCV. One model was developed based on different tests carried out on a commercial-400 W PEM electrolyzer for the self-discharge voltage. The proposed model has been compared with the experimental data to assess its effectiveness in modeling the self-discharge phenomenon. Thus, by taking into account this voltage drop in the modeling, simulations with a higher degree of reliability were obtained when predicting the behavior of PEM electrolyzers. |
format | Online Article Text |
id | pubmed-8224672 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-82246722021-06-25 Self-Discharge of a Proton Exchange Membrane Electrolyzer: Investigation for Modeling Purposes Hernández-Gómez, Ángel Ramirez, Victor Guilbert, Damien Saldivar, Belem Membranes (Basel) Article The self-discharge phenomenon results in a decrease of the open-circuit voltage (OCV), which occurs when an electrochemical device is disconnected from the power source. Although the self-discharge phenomenon has widely been investigated for energy storage devices such as batteries and supercapacitors, no previous works have been reported in the literature about this phenomenon for electrolyzers. For this reason, this work is mainly focused on investigating the self-discharge voltage that occurs in a proton exchange membrane (PEM) electrolyzer. To investigate this voltage drop for modeling purposes, experiments have been performed on a commercial PEM electrolyzer to analyze the decrease in the OCV. One model was developed based on different tests carried out on a commercial-400 W PEM electrolyzer for the self-discharge voltage. The proposed model has been compared with the experimental data to assess its effectiveness in modeling the self-discharge phenomenon. Thus, by taking into account this voltage drop in the modeling, simulations with a higher degree of reliability were obtained when predicting the behavior of PEM electrolyzers. MDPI 2021-05-22 /pmc/articles/PMC8224672/ /pubmed/34067353 http://dx.doi.org/10.3390/membranes11060379 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Hernández-Gómez, Ángel Ramirez, Victor Guilbert, Damien Saldivar, Belem Self-Discharge of a Proton Exchange Membrane Electrolyzer: Investigation for Modeling Purposes |
title | Self-Discharge of a Proton Exchange Membrane Electrolyzer: Investigation for Modeling Purposes |
title_full | Self-Discharge of a Proton Exchange Membrane Electrolyzer: Investigation for Modeling Purposes |
title_fullStr | Self-Discharge of a Proton Exchange Membrane Electrolyzer: Investigation for Modeling Purposes |
title_full_unstemmed | Self-Discharge of a Proton Exchange Membrane Electrolyzer: Investigation for Modeling Purposes |
title_short | Self-Discharge of a Proton Exchange Membrane Electrolyzer: Investigation for Modeling Purposes |
title_sort | self-discharge of a proton exchange membrane electrolyzer: investigation for modeling purposes |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8224672/ https://www.ncbi.nlm.nih.gov/pubmed/34067353 http://dx.doi.org/10.3390/membranes11060379 |
work_keys_str_mv | AT hernandezgomezangel selfdischargeofaprotonexchangemembraneelectrolyzerinvestigationformodelingpurposes AT ramirezvictor selfdischargeofaprotonexchangemembraneelectrolyzerinvestigationformodelingpurposes AT guilbertdamien selfdischargeofaprotonexchangemembraneelectrolyzerinvestigationformodelingpurposes AT saldivarbelem selfdischargeofaprotonexchangemembraneelectrolyzerinvestigationformodelingpurposes |