Cargando…

Cardiac Output and Cerebral Oxygenation in Term Neonates during Neonatal Transition

The immediate transition from foetus to neonate includes substantial changes, especially concerning the cardiovascular system. Furthermore, the brain is one of the most vulnerable organs to hypoxia during this period. According to current guidelines for postnatal stabilization, the recommended param...

Descripción completa

Detalles Bibliográficos
Autores principales: Baik-Schneditz, Nariae, Schwaberger, Bernhard, Mileder, Lukas, Höller, Nina, Avian, Alexander, Urlesberger, Berndt, Pichler, Gerhard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8224741/
https://www.ncbi.nlm.nih.gov/pubmed/34073671
http://dx.doi.org/10.3390/children8060439
_version_ 1783711947076665344
author Baik-Schneditz, Nariae
Schwaberger, Bernhard
Mileder, Lukas
Höller, Nina
Avian, Alexander
Urlesberger, Berndt
Pichler, Gerhard
author_facet Baik-Schneditz, Nariae
Schwaberger, Bernhard
Mileder, Lukas
Höller, Nina
Avian, Alexander
Urlesberger, Berndt
Pichler, Gerhard
author_sort Baik-Schneditz, Nariae
collection PubMed
description The immediate transition from foetus to neonate includes substantial changes, especially concerning the cardiovascular system. Furthermore, the brain is one of the most vulnerable organs to hypoxia during this period. According to current guidelines for postnatal stabilization, the recommended parameters for monitoring are heart rate (HR) and arterial oxygen saturation (SpO(2)). Recently, there is a growing interest in advanced monitoring of the cardio-circulatory system and the brain to get further objective information about the neonate’s condition during the immediate postnatal transition after birth. The aim of the present study was to combine cardiac output (CO) and brain oxygenation monitoring in term neonates after caesarean section in order to analyse the potential influence of CO on cerebral oxygenation during neonatal transition. This was a monocentric, prospective, observational study. For non-invasive cardiac output measurements, the electrical velocimetry (EV) method (Aesculon Monitor, Osypka Medical, CA, USA) was used. The pulse oximeter probe for SpO(2) and HR measurements was placed on the right hand or wrist. The cerebral tissue oxygen index (cTOI) was measured using a NIRO-200NX monitor with the near-infrared spectroscopy (NIRS) transducer on the right frontoparietal head. Monitoring started at minute 1 and was continued until minute 15 after birth. At minutes 5, 10, and 15 after birth, mean CO was calculated from six 10 s periods (with beat-to-beat analysis). During the study period, 99 term neonates were enrolled. Data from neonates with uncomplicated transitions were analysed. CO showed a tendency to decrease until minute 10. During the complete observational period, there was no significant correlation between CO and cTOI. The present study was the first to investigate a possible correlation between CO and cerebral oxygenation in term infants during the immediate neonatal transition. In term infants with uncomplicated neonatal transition after caesarean section, CO did not correlate with cerebral oxygenation.
format Online
Article
Text
id pubmed-8224741
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-82247412021-06-25 Cardiac Output and Cerebral Oxygenation in Term Neonates during Neonatal Transition Baik-Schneditz, Nariae Schwaberger, Bernhard Mileder, Lukas Höller, Nina Avian, Alexander Urlesberger, Berndt Pichler, Gerhard Children (Basel) Article The immediate transition from foetus to neonate includes substantial changes, especially concerning the cardiovascular system. Furthermore, the brain is one of the most vulnerable organs to hypoxia during this period. According to current guidelines for postnatal stabilization, the recommended parameters for monitoring are heart rate (HR) and arterial oxygen saturation (SpO(2)). Recently, there is a growing interest in advanced monitoring of the cardio-circulatory system and the brain to get further objective information about the neonate’s condition during the immediate postnatal transition after birth. The aim of the present study was to combine cardiac output (CO) and brain oxygenation monitoring in term neonates after caesarean section in order to analyse the potential influence of CO on cerebral oxygenation during neonatal transition. This was a monocentric, prospective, observational study. For non-invasive cardiac output measurements, the electrical velocimetry (EV) method (Aesculon Monitor, Osypka Medical, CA, USA) was used. The pulse oximeter probe for SpO(2) and HR measurements was placed on the right hand or wrist. The cerebral tissue oxygen index (cTOI) was measured using a NIRO-200NX monitor with the near-infrared spectroscopy (NIRS) transducer on the right frontoparietal head. Monitoring started at minute 1 and was continued until minute 15 after birth. At minutes 5, 10, and 15 after birth, mean CO was calculated from six 10 s periods (with beat-to-beat analysis). During the study period, 99 term neonates were enrolled. Data from neonates with uncomplicated transitions were analysed. CO showed a tendency to decrease until minute 10. During the complete observational period, there was no significant correlation between CO and cTOI. The present study was the first to investigate a possible correlation between CO and cerebral oxygenation in term infants during the immediate neonatal transition. In term infants with uncomplicated neonatal transition after caesarean section, CO did not correlate with cerebral oxygenation. MDPI 2021-05-24 /pmc/articles/PMC8224741/ /pubmed/34073671 http://dx.doi.org/10.3390/children8060439 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Baik-Schneditz, Nariae
Schwaberger, Bernhard
Mileder, Lukas
Höller, Nina
Avian, Alexander
Urlesberger, Berndt
Pichler, Gerhard
Cardiac Output and Cerebral Oxygenation in Term Neonates during Neonatal Transition
title Cardiac Output and Cerebral Oxygenation in Term Neonates during Neonatal Transition
title_full Cardiac Output and Cerebral Oxygenation in Term Neonates during Neonatal Transition
title_fullStr Cardiac Output and Cerebral Oxygenation in Term Neonates during Neonatal Transition
title_full_unstemmed Cardiac Output and Cerebral Oxygenation in Term Neonates during Neonatal Transition
title_short Cardiac Output and Cerebral Oxygenation in Term Neonates during Neonatal Transition
title_sort cardiac output and cerebral oxygenation in term neonates during neonatal transition
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8224741/
https://www.ncbi.nlm.nih.gov/pubmed/34073671
http://dx.doi.org/10.3390/children8060439
work_keys_str_mv AT baikschneditznariae cardiacoutputandcerebraloxygenationintermneonatesduringneonataltransition
AT schwabergerbernhard cardiacoutputandcerebraloxygenationintermneonatesduringneonataltransition
AT milederlukas cardiacoutputandcerebraloxygenationintermneonatesduringneonataltransition
AT hollernina cardiacoutputandcerebraloxygenationintermneonatesduringneonataltransition
AT avianalexander cardiacoutputandcerebraloxygenationintermneonatesduringneonataltransition
AT urlesbergerberndt cardiacoutputandcerebraloxygenationintermneonatesduringneonataltransition
AT pichlergerhard cardiacoutputandcerebraloxygenationintermneonatesduringneonataltransition