Cargando…

Age-Related Alterations in the Testicular Proteome of a Non-Human Primate

Aging of human testis and associated cellular changes is difficult to assess. Therefore, we used a translational, non-human primate model to get insights into underlying cellular and biochemical processes. Using proteomics and immunohistochemistry, we analyzed testicular tissue of young (age 2 to 3)...

Descripción completa

Detalles Bibliográficos
Autores principales: Stöckl, Jan B., Schmid, Nina, Flenkenthaler, Florian, Drummer, Charis, Behr, Rüdiger, Mayerhofer, Artur, Arnold, Georg J., Fröhlich, Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8225046/
https://www.ncbi.nlm.nih.gov/pubmed/34074003
http://dx.doi.org/10.3390/cells10061306
Descripción
Sumario:Aging of human testis and associated cellular changes is difficult to assess. Therefore, we used a translational, non-human primate model to get insights into underlying cellular and biochemical processes. Using proteomics and immunohistochemistry, we analyzed testicular tissue of young (age 2 to 3) and old (age 10 to 12) common marmosets (Callithrix jacchus). Using a mass spectrometry-based proteomics approach, we identified 63,124 peptides, which could be assigned to 5924 proteins. Among them, we found proteins specific for germ cells and somatic cells, such as Leydig and Sertoli cells. Quantitative analysis showed 31 differentially abundant proteins, of which 29 proteins were more abundant in older animals. An increased abundance of anti-proliferative proteins, among them CDKN2A, indicate reduced cell proliferation in old testes. Additionally, an increased abundance of several small leucine rich repeat proteoglycans and other extracellular matrix proteins was observed, which may be related to impaired cell migration and fibrotic events. Furthermore, an increased abundance of proteins with inhibitory roles in smooth muscle cell contraction like CNN1 indicates functional alterations in testicular peritubular cells and may mirror a reduced capacity of these cells to contract in old testes.