Cargando…
Phylogenetic Networks and Parameters Inferred from HIV Nucleotide Sequences of High-Risk and General Population Groups in Uganda: Implications for Epidemic Control
Phylogenetic inference is useful in characterising HIV transmission networks and assessing where prevention is likely to have the greatest impact. However, estimating parameters that influence the network structure is still scarce, but important in evaluating determinants of HIV spread. We analyzed...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8225143/ https://www.ncbi.nlm.nih.gov/pubmed/34073846 http://dx.doi.org/10.3390/v13060970 |
_version_ | 1783712033518125056 |
---|---|
author | Bbosa, Nicholas Ssemwanga, Deogratius Nsubuga, Rebecca N. Kiwanuka, Noah Bagaya, Bernard S. Kitayimbwa, John M. Ssekagiri, Alfred Yebra, Gonzalo Kaleebu, Pontiano Leigh-Brown, Andrew |
author_facet | Bbosa, Nicholas Ssemwanga, Deogratius Nsubuga, Rebecca N. Kiwanuka, Noah Bagaya, Bernard S. Kitayimbwa, John M. Ssekagiri, Alfred Yebra, Gonzalo Kaleebu, Pontiano Leigh-Brown, Andrew |
author_sort | Bbosa, Nicholas |
collection | PubMed |
description | Phylogenetic inference is useful in characterising HIV transmission networks and assessing where prevention is likely to have the greatest impact. However, estimating parameters that influence the network structure is still scarce, but important in evaluating determinants of HIV spread. We analyzed 2017 HIV pol sequences (728 Lake Victoria fisherfolk communities (FFCs), 592 female sex workers (FSWs) and 697 general population (GP)) to identify transmission networks on Maximum Likelihood (ML) phylogenetic trees and refined them using time-resolved phylogenies. Network generative models were fitted to the observed degree distributions and network parameters, and corrected Akaike Information Criteria and Bayesian Information Criteria values were estimated. 347 (17.2%) HIV sequences were linked on ML trees (maximum genetic distance ≤4.5%, ≥95% bootstrap support) and, of these, 303 (86.7%) that consisted of pure A1 (n = 168) and D (n = 135) subtypes were analyzed in BEAST v1.8.4. The majority of networks (at least 40%) were found at a time depth of ≤5 years. The waring and yule models fitted best networks of FFCs and FSWs respectively while the negative binomial model fitted best networks in the GP. The network structure in the HIV-hyperendemic FFCs is likely to be scale-free and shaped by preferential attachment, in contrast to the GP. The findings support the targeting of interventions for FFCs in a timely manner for effective epidemic control. Interventions ought to be tailored according to the dynamics of the HIV epidemic in the target population and understanding the network structure is critical in ensuring the success of HIV prevention programs. |
format | Online Article Text |
id | pubmed-8225143 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-82251432021-06-25 Phylogenetic Networks and Parameters Inferred from HIV Nucleotide Sequences of High-Risk and General Population Groups in Uganda: Implications for Epidemic Control Bbosa, Nicholas Ssemwanga, Deogratius Nsubuga, Rebecca N. Kiwanuka, Noah Bagaya, Bernard S. Kitayimbwa, John M. Ssekagiri, Alfred Yebra, Gonzalo Kaleebu, Pontiano Leigh-Brown, Andrew Viruses Article Phylogenetic inference is useful in characterising HIV transmission networks and assessing where prevention is likely to have the greatest impact. However, estimating parameters that influence the network structure is still scarce, but important in evaluating determinants of HIV spread. We analyzed 2017 HIV pol sequences (728 Lake Victoria fisherfolk communities (FFCs), 592 female sex workers (FSWs) and 697 general population (GP)) to identify transmission networks on Maximum Likelihood (ML) phylogenetic trees and refined them using time-resolved phylogenies. Network generative models were fitted to the observed degree distributions and network parameters, and corrected Akaike Information Criteria and Bayesian Information Criteria values were estimated. 347 (17.2%) HIV sequences were linked on ML trees (maximum genetic distance ≤4.5%, ≥95% bootstrap support) and, of these, 303 (86.7%) that consisted of pure A1 (n = 168) and D (n = 135) subtypes were analyzed in BEAST v1.8.4. The majority of networks (at least 40%) were found at a time depth of ≤5 years. The waring and yule models fitted best networks of FFCs and FSWs respectively while the negative binomial model fitted best networks in the GP. The network structure in the HIV-hyperendemic FFCs is likely to be scale-free and shaped by preferential attachment, in contrast to the GP. The findings support the targeting of interventions for FFCs in a timely manner for effective epidemic control. Interventions ought to be tailored according to the dynamics of the HIV epidemic in the target population and understanding the network structure is critical in ensuring the success of HIV prevention programs. MDPI 2021-05-24 /pmc/articles/PMC8225143/ /pubmed/34073846 http://dx.doi.org/10.3390/v13060970 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Bbosa, Nicholas Ssemwanga, Deogratius Nsubuga, Rebecca N. Kiwanuka, Noah Bagaya, Bernard S. Kitayimbwa, John M. Ssekagiri, Alfred Yebra, Gonzalo Kaleebu, Pontiano Leigh-Brown, Andrew Phylogenetic Networks and Parameters Inferred from HIV Nucleotide Sequences of High-Risk and General Population Groups in Uganda: Implications for Epidemic Control |
title | Phylogenetic Networks and Parameters Inferred from HIV Nucleotide Sequences of High-Risk and General Population Groups in Uganda: Implications for Epidemic Control |
title_full | Phylogenetic Networks and Parameters Inferred from HIV Nucleotide Sequences of High-Risk and General Population Groups in Uganda: Implications for Epidemic Control |
title_fullStr | Phylogenetic Networks and Parameters Inferred from HIV Nucleotide Sequences of High-Risk and General Population Groups in Uganda: Implications for Epidemic Control |
title_full_unstemmed | Phylogenetic Networks and Parameters Inferred from HIV Nucleotide Sequences of High-Risk and General Population Groups in Uganda: Implications for Epidemic Control |
title_short | Phylogenetic Networks and Parameters Inferred from HIV Nucleotide Sequences of High-Risk and General Population Groups in Uganda: Implications for Epidemic Control |
title_sort | phylogenetic networks and parameters inferred from hiv nucleotide sequences of high-risk and general population groups in uganda: implications for epidemic control |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8225143/ https://www.ncbi.nlm.nih.gov/pubmed/34073846 http://dx.doi.org/10.3390/v13060970 |
work_keys_str_mv | AT bbosanicholas phylogeneticnetworksandparametersinferredfromhivnucleotidesequencesofhighriskandgeneralpopulationgroupsinugandaimplicationsforepidemiccontrol AT ssemwangadeogratius phylogeneticnetworksandparametersinferredfromhivnucleotidesequencesofhighriskandgeneralpopulationgroupsinugandaimplicationsforepidemiccontrol AT nsubugarebeccan phylogeneticnetworksandparametersinferredfromhivnucleotidesequencesofhighriskandgeneralpopulationgroupsinugandaimplicationsforepidemiccontrol AT kiwanukanoah phylogeneticnetworksandparametersinferredfromhivnucleotidesequencesofhighriskandgeneralpopulationgroupsinugandaimplicationsforepidemiccontrol AT bagayabernards phylogeneticnetworksandparametersinferredfromhivnucleotidesequencesofhighriskandgeneralpopulationgroupsinugandaimplicationsforepidemiccontrol AT kitayimbwajohnm phylogeneticnetworksandparametersinferredfromhivnucleotidesequencesofhighriskandgeneralpopulationgroupsinugandaimplicationsforepidemiccontrol AT ssekagirialfred phylogeneticnetworksandparametersinferredfromhivnucleotidesequencesofhighriskandgeneralpopulationgroupsinugandaimplicationsforepidemiccontrol AT yebragonzalo phylogeneticnetworksandparametersinferredfromhivnucleotidesequencesofhighriskandgeneralpopulationgroupsinugandaimplicationsforepidemiccontrol AT kaleebupontiano phylogeneticnetworksandparametersinferredfromhivnucleotidesequencesofhighriskandgeneralpopulationgroupsinugandaimplicationsforepidemiccontrol AT leighbrownandrew phylogeneticnetworksandparametersinferredfromhivnucleotidesequencesofhighriskandgeneralpopulationgroupsinugandaimplicationsforepidemiccontrol |