Cargando…
Involvement of mTOR Pathways in Recovery from Spinal Cord Injury by Modulation of Autophagy and Immune Response
Traumatic spinal cord injury (SCI) is untreatable and remains the leading cause of disability. Neuroprotection and recovery after SCI can be partially achieved by rapamycin (RAPA) treatment, an inhibitor of mTORC1, complex 1 of the mammalian target of rapamycin (mTOR) pathway. However, mechanisms re...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8225190/ https://www.ncbi.nlm.nih.gov/pubmed/34073791 http://dx.doi.org/10.3390/biomedicines9060593 |
_version_ | 1783712044802899968 |
---|---|
author | Vargova, Ingrid Machova Urdzikova, Lucia Karova, Kristyna Smejkalova, Barbora Sursal, Tolga Cimermanova, Veronika Turnovcova, Karolina Gandhi, Chirag D. Jhanwar-Uniyal, Meena Jendelova, Pavla |
author_facet | Vargova, Ingrid Machova Urdzikova, Lucia Karova, Kristyna Smejkalova, Barbora Sursal, Tolga Cimermanova, Veronika Turnovcova, Karolina Gandhi, Chirag D. Jhanwar-Uniyal, Meena Jendelova, Pavla |
author_sort | Vargova, Ingrid |
collection | PubMed |
description | Traumatic spinal cord injury (SCI) is untreatable and remains the leading cause of disability. Neuroprotection and recovery after SCI can be partially achieved by rapamycin (RAPA) treatment, an inhibitor of mTORC1, complex 1 of the mammalian target of rapamycin (mTOR) pathway. However, mechanisms regulated by the mTOR pathway are not only controlled by mTORC1, but also by a second mTOR complex (mTORC2). Second-generation inhibitor, pp242, inhibits both mTORC1 and mtORC2, which led us to explore its therapeutic potential after SCI and compare it to RAPA treatment. In a rat balloon-compression model of SCI, the effect of daily RAPA (5 mg/kg; IP) and pp242 (5 mg/kg; IP) treatment on inflammatory responses and autophagy was observed. We demonstrated inhibition of the mTOR pathway after SCI through analysis of p-S6, p-Akt, and p-4E-BP1 levels. Several proinflammatory cytokines were elevated in pp242-treated rats, while RAPA treatment led to a decrease in proinflammatory cytokines. Both RAPA and pp242 treatments caused an upregulation of LC3B and led to improved functional and structural recovery in acute SCI compared to the controls, however, a greater axonal sprouting was seen following RAPA treatment. These results suggest that dual mTOR inhibition by pp242 after SCI induces distinct mechanisms and leads to recovery somewhat inferior to that following RAPA treatment. |
format | Online Article Text |
id | pubmed-8225190 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-82251902021-06-25 Involvement of mTOR Pathways in Recovery from Spinal Cord Injury by Modulation of Autophagy and Immune Response Vargova, Ingrid Machova Urdzikova, Lucia Karova, Kristyna Smejkalova, Barbora Sursal, Tolga Cimermanova, Veronika Turnovcova, Karolina Gandhi, Chirag D. Jhanwar-Uniyal, Meena Jendelova, Pavla Biomedicines Article Traumatic spinal cord injury (SCI) is untreatable and remains the leading cause of disability. Neuroprotection and recovery after SCI can be partially achieved by rapamycin (RAPA) treatment, an inhibitor of mTORC1, complex 1 of the mammalian target of rapamycin (mTOR) pathway. However, mechanisms regulated by the mTOR pathway are not only controlled by mTORC1, but also by a second mTOR complex (mTORC2). Second-generation inhibitor, pp242, inhibits both mTORC1 and mtORC2, which led us to explore its therapeutic potential after SCI and compare it to RAPA treatment. In a rat balloon-compression model of SCI, the effect of daily RAPA (5 mg/kg; IP) and pp242 (5 mg/kg; IP) treatment on inflammatory responses and autophagy was observed. We demonstrated inhibition of the mTOR pathway after SCI through analysis of p-S6, p-Akt, and p-4E-BP1 levels. Several proinflammatory cytokines were elevated in pp242-treated rats, while RAPA treatment led to a decrease in proinflammatory cytokines. Both RAPA and pp242 treatments caused an upregulation of LC3B and led to improved functional and structural recovery in acute SCI compared to the controls, however, a greater axonal sprouting was seen following RAPA treatment. These results suggest that dual mTOR inhibition by pp242 after SCI induces distinct mechanisms and leads to recovery somewhat inferior to that following RAPA treatment. MDPI 2021-05-24 /pmc/articles/PMC8225190/ /pubmed/34073791 http://dx.doi.org/10.3390/biomedicines9060593 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Vargova, Ingrid Machova Urdzikova, Lucia Karova, Kristyna Smejkalova, Barbora Sursal, Tolga Cimermanova, Veronika Turnovcova, Karolina Gandhi, Chirag D. Jhanwar-Uniyal, Meena Jendelova, Pavla Involvement of mTOR Pathways in Recovery from Spinal Cord Injury by Modulation of Autophagy and Immune Response |
title | Involvement of mTOR Pathways in Recovery from Spinal Cord Injury by Modulation of Autophagy and Immune Response |
title_full | Involvement of mTOR Pathways in Recovery from Spinal Cord Injury by Modulation of Autophagy and Immune Response |
title_fullStr | Involvement of mTOR Pathways in Recovery from Spinal Cord Injury by Modulation of Autophagy and Immune Response |
title_full_unstemmed | Involvement of mTOR Pathways in Recovery from Spinal Cord Injury by Modulation of Autophagy and Immune Response |
title_short | Involvement of mTOR Pathways in Recovery from Spinal Cord Injury by Modulation of Autophagy and Immune Response |
title_sort | involvement of mtor pathways in recovery from spinal cord injury by modulation of autophagy and immune response |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8225190/ https://www.ncbi.nlm.nih.gov/pubmed/34073791 http://dx.doi.org/10.3390/biomedicines9060593 |
work_keys_str_mv | AT vargovaingrid involvementofmtorpathwaysinrecoveryfromspinalcordinjurybymodulationofautophagyandimmuneresponse AT machovaurdzikovalucia involvementofmtorpathwaysinrecoveryfromspinalcordinjurybymodulationofautophagyandimmuneresponse AT karovakristyna involvementofmtorpathwaysinrecoveryfromspinalcordinjurybymodulationofautophagyandimmuneresponse AT smejkalovabarbora involvementofmtorpathwaysinrecoveryfromspinalcordinjurybymodulationofautophagyandimmuneresponse AT sursaltolga involvementofmtorpathwaysinrecoveryfromspinalcordinjurybymodulationofautophagyandimmuneresponse AT cimermanovaveronika involvementofmtorpathwaysinrecoveryfromspinalcordinjurybymodulationofautophagyandimmuneresponse AT turnovcovakarolina involvementofmtorpathwaysinrecoveryfromspinalcordinjurybymodulationofautophagyandimmuneresponse AT gandhichiragd involvementofmtorpathwaysinrecoveryfromspinalcordinjurybymodulationofautophagyandimmuneresponse AT jhanwaruniyalmeena involvementofmtorpathwaysinrecoveryfromspinalcordinjurybymodulationofautophagyandimmuneresponse AT jendelovapavla involvementofmtorpathwaysinrecoveryfromspinalcordinjurybymodulationofautophagyandimmuneresponse |