Cargando…
Prediction of absenteeism in public schools teachers with machine learning
OBJECTIVE: To predict the risk of absence from work due to morbidities of teachers working in early childhood education in the municipal public schools, using machine learning algorithms. METHODS: This is a cross-sectional study using secondary, public and anonymous data from the Relação Anual de In...
Autores principales: | Fernandes, Fernando Timoteo, Chiavegatto, Alexandre Dias Porto |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Faculdade de Saúde Pública da Universidade de São Paulo
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8225323/ https://www.ncbi.nlm.nih.gov/pubmed/34133618 http://dx.doi.org/10.11606/s1518-8787.2021055002677 |
Ejemplares similares
-
Improving the performance of machine learning algorithms for health outcomes predictions in multicentric cohorts
por: Wichmann, Roberta Moreira, et al.
Publicado: (2023) -
A multipurpose machine learning approach to predict COVID-19 negative prognosis in São Paulo, Brazil
por: Fernandes, Fernando Timoteo, et al.
Publicado: (2021) -
Teacher absenteeism, improving learning, and financial incentives for teachers
por: O’Sullivan, Margo
Publicado: (2022) -
Spatial Clusters of Cancer Mortality in Brazil: A Machine Learning Modeling Approach
por: Casaes Teixeira, Bruno, et al.
Publicado: (2023) -
Physician preference for receiving machine learning predictive results: A cross-sectional multicentric study
por: Wichmann, Roberta Moreira, et al.
Publicado: (2022)