Cargando…

A Model for Evolutionary Structural Plasticity and Synchronization of a Network of Neurons

A model of time-dependent structural plasticity for the synchronization of neuron networks is presented. It is known that synchronized oscillations reproduce structured communities, and this synchronization is transient since it can be enhanced or suppressed, and the proposed model reproduces this c...

Descripción completa

Detalles Bibliográficos
Autores principales: Solís-Perales, Gualberto, Estrada, Jairo Sánchez
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8225422/
https://www.ncbi.nlm.nih.gov/pubmed/34221108
http://dx.doi.org/10.1155/2021/9956319
Descripción
Sumario:A model of time-dependent structural plasticity for the synchronization of neuron networks is presented. It is known that synchronized oscillations reproduce structured communities, and this synchronization is transient since it can be enhanced or suppressed, and the proposed model reproduces this characteristic. The evolutionary behavior of the couplings is comparable to those of a network of biological neurons. In the structural network, the physical connections of axons and dendrites between neurons are modeled, and the evolution in the connections depends on the neurons' potential. Moreover, it is shown that the coupling force's function behaves as an adaptive controller that leads the neurons in the network to synchronization. The change in the node's degree shows that the network exhibits time-dependent structural plasticity, achieved through the evolutionary or adaptive change of the coupling force between the nodes. The coupling force function is based on the computed magnitude of the membrane potential deviations with its neighbors and a threshold that determines the neuron's connections. These rule the functional network structure along the time.