Cargando…
How artificial intelligence might disrupt diagnostics in hematology in the near future
Artificial intelligence (AI) is about to make itself indispensable in the health care sector. Examples of successful applications or promising approaches range from the application of pattern recognition software to pre-process and analyze digital medical images, to deep learning algorithms for subt...
Autores principales: | Walter, Wencke, Haferlach, Claudia, Nadarajah, Niroshan, Schmidts, Ines, Kühn, Constanze, Kern, Wolfgang, Haferlach, Torsten |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8225509/ https://www.ncbi.nlm.nih.gov/pubmed/34103684 http://dx.doi.org/10.1038/s41388-021-01861-y |
Ejemplares similares
-
Aberrant somatic hypermutation of CCND1 generates non-coding drivers of mantle cell lymphomagenesis
por: Müller, Heiko, et al.
Publicado: (2022) -
Interplay of TP53 allelic state, blast count, and complex karyotype on survival of patients with AML and MDS
por: Stengel, Anna, et al.
Publicado: (2023) -
Mutational patterns and their correlation to CHIP-related mutations and age in hematological malignancies
por: Stengel, Anna, et al.
Publicado: (2021) -
S161: UBA1 NON-M41 VARIANTS ARE MORE AGGRESSIVE THAN UBA1 M41 VARIANTS IN THEIR HEMATOLOGICAL MANIFESTATIONS.
por: Sakuma, Maki, et al.
Publicado: (2023) -
Risk prediction in MDS: independent validation of the IPSS-M—ready for routine?
por: Baer, Constance, et al.
Publicado: (2023)