Cargando…
Predicting lethal courses in critically ill COVID-19 patients using a machine learning model trained on patients with non-COVID-19 viral pneumonia
In a pandemic with a novel disease, disease-specific prognosis models are available only with a delay. To bridge the critical early phase, models built for similar diseases might be applied. To test the accuracy of such a knowledge transfer, we investigated how precise lethal courses in critically i...
Autores principales: | Lichtner, Gregor, Balzer, Felix, Haufe, Stefan, Giesa, Niklas, Schiefenhövel, Fridtjof, Schmieding, Malte, Jurth, Carlo, Kopp, Wolfgang, Akalin, Altuna, Schaller, Stefan J., Weber-Carstens, Steffen, Spies, Claudia, von Dincklage, Falk |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8225662/ https://www.ncbi.nlm.nih.gov/pubmed/34168198 http://dx.doi.org/10.1038/s41598-021-92475-7 |
Ejemplares similares
-
Improvements in Patient Monitoring in the Intensive Care Unit: Survey Study
por: Poncette, Akira-Sebastian, et al.
Publicado: (2020) -
Automated Monitoring of Adherence to Evidenced-Based Clinical Guideline Recommendations: Design and Implementation Study
por: Lichtner, Gregor, et al.
Publicado: (2023) -
Technical considerations when using the EEG export of the SEDLine Root device
por: von Dincklage, Falk, et al.
Publicado: (2020) -
Interactive Versus Static Decision Support Tools for COVID-19: Randomized Controlled Trial
por: Röbbelen, Alice, et al.
Publicado: (2022) -
Psychometric properties of the Reintegration to Normal Living Index for sepsis survivors
por: Streich, Kathleen, et al.
Publicado: (2023)