Cargando…

Constructing graphs from genetic encodings

Our understanding of real-world connected systems has benefited from studying their evolution, from random wirings and rewirings to growth-dependent topologies. Long overlooked in this search has been the role of the innate: networks that connect based on identity-dependent compatibility rules. Insp...

Descripción completa

Detalles Bibliográficos
Autores principales: Barabási, Dániel L., Czégel, Dániel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8225892/
https://www.ncbi.nlm.nih.gov/pubmed/34168181
http://dx.doi.org/10.1038/s41598-021-92577-2
Descripción
Sumario:Our understanding of real-world connected systems has benefited from studying their evolution, from random wirings and rewirings to growth-dependent topologies. Long overlooked in this search has been the role of the innate: networks that connect based on identity-dependent compatibility rules. Inspired by the genetic principles that guide brain connectivity, we derive a network encoding process that can utilize wiring rules to reproducibly generate specific topologies. To illustrate the representational power of this approach, we propose stochastic and deterministic processes for generating a wide range of network topologies. Specifically, we detail network heuristics that generate structured graphs, such as feed-forward and hierarchical networks. In addition, we characterize a Random Genetic (RG) family of networks, which, like Erdős–Rényi graphs, display critical phase transitions, however their modular underpinnings lead to markedly different behaviors under targeted attacks. The proposed framework provides a relevant null-model for social and biological systems, where diverse metrics of identity underpin a node’s preferred connectivity.