Cargando…
Coronavirus disease (COVID-19) detection using X-ray images and enhanced DenseNet
The 2019 novel coronavirus (COVID-19) originating from China, has spread rapidly among people living in other countries. According to the World Health Organization (WHO), by the end of January, more than 104 million people have been affected by COVID-19, including more than 2 million deaths. The num...
Autores principales: | Albahli, Saleh, Ayub, Nasir, Shiraz, Muhammad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8225990/ https://www.ncbi.nlm.nih.gov/pubmed/34191925 http://dx.doi.org/10.1016/j.asoc.2021.107645 |
Ejemplares similares
-
DCNet: DenseNet-77-based CornerNet model for the tomato plant leaf disease detection and classification
por: Albahli, Saleh, et al.
Publicado: (2022) -
Diagnosis of Coronavirus Disease From Chest X-Ray Images Using DenseNet-169 Architecture
por: Dalvi, Pooja Pradeep, et al.
Publicado: (2023) -
Classification and detection of COVID-19 X-Ray images based on DenseNet and VGG16 feature fusion
por: Kong, Lingzhi, et al.
Publicado: (2022) -
A Novel Approach for Prediction of Lung Disease Using Chest X-ray Images Based on DenseNet and MobileNet
por: Tekerek, Adem, et al.
Publicado: (2023) -
CrodenseNet: An efficient parallel cross DenseNet for COVID-19 infection detection
por: Yang, Jingdong, et al.
Publicado: (2022)