Cargando…
Deep Learning on Enhanced CT Images Can Predict the Muscular Invasiveness of Bladder Cancer
BACKGROUND: Clinical treatment decision making of bladder cancer (BCa) relies on the absence or presence of muscle invasion and tumor staging. Deep learning (DL) is a novel technique in image analysis, but its potential for evaluating the muscular invasiveness of bladder cancer remains unclear. The...
Autores principales: | Zhang, Gumuyang, Wu, Zhe, Xu, Lili, Zhang, Xiaoxiao, Zhang, Daming, Mao, Li, Li, Xiuli, Xiao, Yu, Guo, Jun, Ji, Zhigang, Sun, Hao, Jin, Zhengyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8226179/ https://www.ncbi.nlm.nih.gov/pubmed/34178641 http://dx.doi.org/10.3389/fonc.2021.654685 |
Ejemplares similares
-
Application of deep learning reconstruction of ultra-low-dose abdominal CT in the diagnosis of renal calculi
por: Zhang, Xiaoxiao, et al.
Publicado: (2022) -
Development and acceptability validation of a deep learning-based tool for whole-prostate segmentation on multiparametric MRI: a multicenter study
por: Xu, Lili, et al.
Publicado: (2023) -
Radiomics Based on Multiparametric Magnetic Resonance Imaging to Predict Extraprostatic Extension of Prostate Cancer
por: Xu, Lili, et al.
Publicado: (2020) -
External Validation of the Extraprostatic Extension Grade on MRI and Its Incremental Value to Clinical Models for Assessing Extraprostatic Cancer
por: Xu, Lili, et al.
Publicado: (2021) -
Development and clinical utility analysis of a prostate zonal segmentation model on T2-weighted imaging: a multicenter study
por: Xu, Lili, et al.
Publicado: (2023)