Cargando…
Investigating a Selection of Methods for the Prediction of Total Soluble Solids Among Wine Grape Quality Characteristics Using Normalized Difference Vegetation Index Data From Proximal and Remote Sensing
The most common method for determining wine grape quality characteristics is to perform sample-based laboratory analysis, which can be time-consuming and expensive. In this article, we investigate an alternative approach to predict wine grape quality characteristics by combining machine learning tec...
Autores principales: | Kasimati, Aikaterini, Espejo-Garcia, Borja, Vali, Eleanna, Malounas, Ioannis, Fountas, Spyros |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8226266/ https://www.ncbi.nlm.nih.gov/pubmed/34178002 http://dx.doi.org/10.3389/fpls.2021.683078 |
Ejemplares similares
-
Predicting Grape Sugar Content under Quality Attributes Using Normalized Difference Vegetation Index Data and Automated Machine Learning
por: Kasimati, Aikaterini, et al.
Publicado: (2022) -
Can Satellites Predict Yield? Ensemble Machine Learning and Statistical Analysis of Sentinel-2 Imagery for Processing Tomato Yield Prediction
por: Darra, Nicoleta, et al.
Publicado: (2023) -
Agricultural Robotics for Field Operations
por: Fountas, Spyros, et al.
Publicado: (2020) -
Influence of the application of irrigated water-soluble calcium fertilizer on wine grape properties
por: Wang, Rui, et al.
Publicado: (2019) -
The genetic basis of grape and wine aroma
por: Lin, Jerry, et al.
Publicado: (2019)