Cargando…
Analysis of intraspecies diversity reveals a subset of highly variable plant immune receptors and predicts their binding sites
The evolution of recognition specificities by the immune system depends on the generation of receptor diversity and on connecting the binding of new antigens with the initiation of downstream signaling. In plant immunity, the innate Nucleotide-Binding Leucine-Rich Repeat (NLR) receptor family enable...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8226289/ https://www.ncbi.nlm.nih.gov/pubmed/33561286 http://dx.doi.org/10.1093/plcell/koab013 |
_version_ | 1783712257462501376 |
---|---|
author | Prigozhin, Daniil M Krasileva, Ksenia V |
author_facet | Prigozhin, Daniil M Krasileva, Ksenia V |
author_sort | Prigozhin, Daniil M |
collection | PubMed |
description | The evolution of recognition specificities by the immune system depends on the generation of receptor diversity and on connecting the binding of new antigens with the initiation of downstream signaling. In plant immunity, the innate Nucleotide-Binding Leucine-Rich Repeat (NLR) receptor family enables antigen binding and immune signaling. In this study, we surveyed the NLR complements of 62 ecotypes of Arabidopsis thaliana and 54 lines of Brachypodium distachyon and identified a limited number of NLR subfamilies that show high allelic diversity. We show that the predicted specificity-determining residues cluster on the surfaces of Leucine-Rich Repeat domains, but the locations of the clusters vary among NLR subfamilies. By comparing NLR phylogeny, allelic diversity, and known functions of the Arabidopsis NLRs, we formulate a hypothesis for the emergence of direct and indirect pathogen-sensing receptors and of the autoimmune NLRs. These findings reveal the recurring patterns of evolution of innate immunity and can inform NLR engineering efforts. |
format | Online Article Text |
id | pubmed-8226289 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-82262892021-06-28 Analysis of intraspecies diversity reveals a subset of highly variable plant immune receptors and predicts their binding sites Prigozhin, Daniil M Krasileva, Ksenia V Plant Cell Focus on the Biology of Plant Genomes The evolution of recognition specificities by the immune system depends on the generation of receptor diversity and on connecting the binding of new antigens with the initiation of downstream signaling. In plant immunity, the innate Nucleotide-Binding Leucine-Rich Repeat (NLR) receptor family enables antigen binding and immune signaling. In this study, we surveyed the NLR complements of 62 ecotypes of Arabidopsis thaliana and 54 lines of Brachypodium distachyon and identified a limited number of NLR subfamilies that show high allelic diversity. We show that the predicted specificity-determining residues cluster on the surfaces of Leucine-Rich Repeat domains, but the locations of the clusters vary among NLR subfamilies. By comparing NLR phylogeny, allelic diversity, and known functions of the Arabidopsis NLRs, we formulate a hypothesis for the emergence of direct and indirect pathogen-sensing receptors and of the autoimmune NLRs. These findings reveal the recurring patterns of evolution of innate immunity and can inform NLR engineering efforts. Oxford University Press 2021-01-25 /pmc/articles/PMC8226289/ /pubmed/33561286 http://dx.doi.org/10.1093/plcell/koab013 Text en © The Author(s) 2021. Published by Oxford University Press on behalf of American Society of Plant Biologists. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Focus on the Biology of Plant Genomes Prigozhin, Daniil M Krasileva, Ksenia V Analysis of intraspecies diversity reveals a subset of highly variable plant immune receptors and predicts their binding sites |
title | Analysis of intraspecies diversity reveals a subset of highly variable plant immune receptors and predicts their binding sites |
title_full | Analysis of intraspecies diversity reveals a subset of highly variable plant immune receptors and predicts their binding sites |
title_fullStr | Analysis of intraspecies diversity reveals a subset of highly variable plant immune receptors and predicts their binding sites |
title_full_unstemmed | Analysis of intraspecies diversity reveals a subset of highly variable plant immune receptors and predicts their binding sites |
title_short | Analysis of intraspecies diversity reveals a subset of highly variable plant immune receptors and predicts their binding sites |
title_sort | analysis of intraspecies diversity reveals a subset of highly variable plant immune receptors and predicts their binding sites |
topic | Focus on the Biology of Plant Genomes |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8226289/ https://www.ncbi.nlm.nih.gov/pubmed/33561286 http://dx.doi.org/10.1093/plcell/koab013 |
work_keys_str_mv | AT prigozhindaniilm analysisofintraspeciesdiversityrevealsasubsetofhighlyvariableplantimmunereceptorsandpredictstheirbindingsites AT krasilevakseniav analysisofintraspeciesdiversityrevealsasubsetofhighlyvariableplantimmunereceptorsandpredictstheirbindingsites |