Cargando…

Extreme Low-Resolution Activity Recognition Using a Super-Resolution-Oriented Generative Adversarial Network

Activity recognition is a fundamental and crucial task in computer vision. Impressive results have been achieved for activity recognition in high-resolution videos, but for extreme low-resolution videos, which capture the action information at a distance and are vital for preserving privacy, the per...

Descripción completa

Detalles Bibliográficos
Autores principales: Hou, Mingzheng, Liu, Song, Zhou, Jiliu, Zhang, Yi, Feng, Ziliang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8226469/
https://www.ncbi.nlm.nih.gov/pubmed/34201195
http://dx.doi.org/10.3390/mi12060670
Descripción
Sumario:Activity recognition is a fundamental and crucial task in computer vision. Impressive results have been achieved for activity recognition in high-resolution videos, but for extreme low-resolution videos, which capture the action information at a distance and are vital for preserving privacy, the performance of activity recognition algorithms is far from satisfactory. The reason is that extreme low-resolution (e.g., 12 × 16 pixels) images lack adequate scene and appearance information, which is needed for efficient recognition. To address this problem, we propose a super-resolution-driven generative adversarial network for activity recognition. To fully take advantage of the latent information in low-resolution images, a powerful network module is employed to super-resolve the extremely low-resolution images with a large scale factor. Then, a general activity recognition network is applied to analyze the super-resolved video clips. Extensive experiments on two public benchmarks were conducted to evaluate the effectiveness of our proposed method. The results demonstrate that our method outperforms several state-of-the-art low-resolution activity recognition approaches.