Cargando…

Modelling and Simulation of the Drug Release from a Solid Dosage Form in the Human Ascending Colon: The Influence of Different Motility Patterns and Fluid Viscosities

For colonic drug delivery, the ascending part of the colon is the most favourable site as it offers the most suitable environmental conditions for drug dissolution. Commonly, the performance of a drug formulation is assessed using standardised dissolution apparatus, which does not replicate the hydr...

Descripción completa

Detalles Bibliográficos
Autores principales: Schütt, Michael, Stamatopoulos, Konstantinos, Batchelor, Hannah K., Simmons, Mark J. H., Alexiadis, Alessio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8226501/
https://www.ncbi.nlm.nih.gov/pubmed/34200574
http://dx.doi.org/10.3390/pharmaceutics13060859
_version_ 1783712301928415232
author Schütt, Michael
Stamatopoulos, Konstantinos
Batchelor, Hannah K.
Simmons, Mark J. H.
Alexiadis, Alessio
author_facet Schütt, Michael
Stamatopoulos, Konstantinos
Batchelor, Hannah K.
Simmons, Mark J. H.
Alexiadis, Alessio
author_sort Schütt, Michael
collection PubMed
description For colonic drug delivery, the ascending part of the colon is the most favourable site as it offers the most suitable environmental conditions for drug dissolution. Commonly, the performance of a drug formulation is assessed using standardised dissolution apparatus, which does not replicate the hydrodynamics and shear stress evoked by wall motion in the colon. In this work, computer simulations are used to analyse and understand the influence of different biorelevant motility patterns on the disintegration/drug release of a solid dosage form (tablet) under different fluid conditions (viscosities) to mimic the ascending colonic environment. Furthermore, the ability of the motility pattern to distribute the drug in the ascending colon luminal environment is analysed to provide data for a spatiotemporal concentration profile. The motility patterns used are derived from in vivo data representing different motility patterns in the human ascending colon. The applied motility patterns show considerable differences in the drug release rate from the tablet, as well as in the ability to distribute the drug along the colon. The drug dissolution/disintegration process from a solid dosage form is primarily influenced by the hydrodynamic and shear stress it experiences, i.e., a combination of motility pattern and fluid viscosity. Reduced fluid motion leads to a more pronounced influence of diffusion in the tablet dissolution process. The motility pattern that provoked frequent single shear stress peaks seemed to be more effective in achieving a higher drug release rate. The ability to simulate drug release profiles under biorelevant colonic environmental conditions provides valuable feedback to better understand the drug formulation and how this can be optimised to ensure that the drug is present in the desired concentration within the ascending colon.
format Online
Article
Text
id pubmed-8226501
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-82265012021-06-26 Modelling and Simulation of the Drug Release from a Solid Dosage Form in the Human Ascending Colon: The Influence of Different Motility Patterns and Fluid Viscosities Schütt, Michael Stamatopoulos, Konstantinos Batchelor, Hannah K. Simmons, Mark J. H. Alexiadis, Alessio Pharmaceutics Article For colonic drug delivery, the ascending part of the colon is the most favourable site as it offers the most suitable environmental conditions for drug dissolution. Commonly, the performance of a drug formulation is assessed using standardised dissolution apparatus, which does not replicate the hydrodynamics and shear stress evoked by wall motion in the colon. In this work, computer simulations are used to analyse and understand the influence of different biorelevant motility patterns on the disintegration/drug release of a solid dosage form (tablet) under different fluid conditions (viscosities) to mimic the ascending colonic environment. Furthermore, the ability of the motility pattern to distribute the drug in the ascending colon luminal environment is analysed to provide data for a spatiotemporal concentration profile. The motility patterns used are derived from in vivo data representing different motility patterns in the human ascending colon. The applied motility patterns show considerable differences in the drug release rate from the tablet, as well as in the ability to distribute the drug along the colon. The drug dissolution/disintegration process from a solid dosage form is primarily influenced by the hydrodynamic and shear stress it experiences, i.e., a combination of motility pattern and fluid viscosity. Reduced fluid motion leads to a more pronounced influence of diffusion in the tablet dissolution process. The motility pattern that provoked frequent single shear stress peaks seemed to be more effective in achieving a higher drug release rate. The ability to simulate drug release profiles under biorelevant colonic environmental conditions provides valuable feedback to better understand the drug formulation and how this can be optimised to ensure that the drug is present in the desired concentration within the ascending colon. MDPI 2021-06-10 /pmc/articles/PMC8226501/ /pubmed/34200574 http://dx.doi.org/10.3390/pharmaceutics13060859 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Schütt, Michael
Stamatopoulos, Konstantinos
Batchelor, Hannah K.
Simmons, Mark J. H.
Alexiadis, Alessio
Modelling and Simulation of the Drug Release from a Solid Dosage Form in the Human Ascending Colon: The Influence of Different Motility Patterns and Fluid Viscosities
title Modelling and Simulation of the Drug Release from a Solid Dosage Form in the Human Ascending Colon: The Influence of Different Motility Patterns and Fluid Viscosities
title_full Modelling and Simulation of the Drug Release from a Solid Dosage Form in the Human Ascending Colon: The Influence of Different Motility Patterns and Fluid Viscosities
title_fullStr Modelling and Simulation of the Drug Release from a Solid Dosage Form in the Human Ascending Colon: The Influence of Different Motility Patterns and Fluid Viscosities
title_full_unstemmed Modelling and Simulation of the Drug Release from a Solid Dosage Form in the Human Ascending Colon: The Influence of Different Motility Patterns and Fluid Viscosities
title_short Modelling and Simulation of the Drug Release from a Solid Dosage Form in the Human Ascending Colon: The Influence of Different Motility Patterns and Fluid Viscosities
title_sort modelling and simulation of the drug release from a solid dosage form in the human ascending colon: the influence of different motility patterns and fluid viscosities
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8226501/
https://www.ncbi.nlm.nih.gov/pubmed/34200574
http://dx.doi.org/10.3390/pharmaceutics13060859
work_keys_str_mv AT schuttmichael modellingandsimulationofthedrugreleasefromasoliddosageforminthehumanascendingcolontheinfluenceofdifferentmotilitypatternsandfluidviscosities
AT stamatopouloskonstantinos modellingandsimulationofthedrugreleasefromasoliddosageforminthehumanascendingcolontheinfluenceofdifferentmotilitypatternsandfluidviscosities
AT batchelorhannahk modellingandsimulationofthedrugreleasefromasoliddosageforminthehumanascendingcolontheinfluenceofdifferentmotilitypatternsandfluidviscosities
AT simmonsmarkjh modellingandsimulationofthedrugreleasefromasoliddosageforminthehumanascendingcolontheinfluenceofdifferentmotilitypatternsandfluidviscosities
AT alexiadisalessio modellingandsimulationofthedrugreleasefromasoliddosageforminthehumanascendingcolontheinfluenceofdifferentmotilitypatternsandfluidviscosities