Cargando…
Validation of Remote Dielectric Sensing (ReDS) in Monitoring Adult Patients Affected by COVID-19 Pneumonia
Remote dielectric sensing (ReDS) is a non-invasive electromagnetic wave technology which provides an accurate reading of lung fluid content, and it has been reported as a valid tool in monitoring heart failure patients. Considering that morphological alterations in COVID-19 include pulmonary edema,...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8226514/ https://www.ncbi.nlm.nih.gov/pubmed/34072716 http://dx.doi.org/10.3390/diagnostics11061003 |
Sumario: | Remote dielectric sensing (ReDS) is a non-invasive electromagnetic wave technology which provides an accurate reading of lung fluid content, and it has been reported as a valid tool in monitoring heart failure patients. Considering that morphological alterations in COVID-19 include pulmonary edema, the purpose of the present study was to evaluate the reliability of ReDS technology in assessing the excess of lung fluid status in COVID-19 pneumonia, as compared to CT scans. In this pilot single center study, confirmed COVID-19 patients were enrolled on admission to an intermediate care unit. Measurements with the ReDS system and CT scans were performed on admission and at weeks 1 and 2. Eleven patients were recruited. The average change in ReDS was −3.1 ± 1.7 after one week (p = 0.001) and −4.6 ± 2.9 after two weeks (p = 0.006). A similar trend was seen in total CT score (−3.3 ± 2.1, p = 0.001). The level of agreement between ReDS and CT changes yielded a perfect result. Statistically significant changes were observed in lactate dehydrogenase, lymphocytes, and c-reactive protein over 2 weeks. This pilot study shows that ReDS can track changes in lung involvement according to the severity of COVID-19. Further studies to detect early clinical deterioration are needed. |
---|